Honorable Members of the West Hartford Town Council Town of West Hartford Town Hall 50 South Main Street West Hartford, CT 06107

RE: Change of Zone from R-6 to RM-MS and then to Special Development District for Proposed Conversion of Existing Building and Construction of New Buildings into 310 Apartment Units and Relocation of Existing 36 Residential Living Units at 27 Park Road and 14 Ringgold Street, West Hartford, Connecticut

Dear Mayor Slifka and Honorable Members of the Town Council:

Application is hereby filed on behalf of Center Development Corporation ("CDC"), contract purchaser and intended developer, and The Sisters of St. Joseph Corporation ("SSJC"), owners of 27 Park Road and 14 Ringgold Street, West Hartford, Connecticut (the "Property") (collectively, "Applicants"). The Applicants propose to redevelop the existing buildings at the Property and to construct new buildings to house 310 apartment units, which will be owned by CDC, and 36 residential living units which will be owned by the SSJC, together with all attendant parking (including garage structures), landscaping, lighting and signage. This letter, together with the accompanying plans and reports, constitute the Applicants' request to rezone the majority of the Property to RM-MS and then to designate the rezoned area a Special Development District, in order to proceed ("Application").

A legal description of the boundary of the property that is the subject of the Application and for which the zone change and SDD designation are requested, is attached to this letter as Enclosure B, which, together with Enclosures A - L described at the end of this letter, should be deemed incorporated as part of the Application.

Planning for this development began in 2012 when the SSJC issued a Request for Proposals for the redevelopment of the property owned by the SSJC ("RFP"). CDC replied to the RFP and was selected by the SSJC as the preferred developer for the property. The Applicants entered into a Purchase and Sale Agreement in 2013 and since that time, CDC and its consultants have been meeting with Town staff, the Design Review Advisory Committee ("DRAC") and neighbors and neighborhood groups in both West Hartford and Hartford. CDC has gone through several iterations of proposed plans, attempting to address therein all concerns raised by DRAC, Town staff and neighbors. We believe that the plans presented to the Town Council as part of the Application and the implementation of those plans will be an improvement to the Property,

represent a significant benefit to this area of Town, and will be an asset to the West Hartford community.

OVERVIEW OF PROPOSAL:

The proposal contains two separate components, each of which is to be developed separately. First, the SSJC intend to consolidate their current operations and residential living spaces into one wing of the existing building. They propose to re-use the west wing of the existing building for 36 residential living units for vowed women religious and for the associated facilities necessary or useful for the support of the sisters living at the premises, such as kitchen and dining facilities, common rooms and a chapel, communal gardens and service facilities. This proposed use is a pre-existing use so the only change is the consolidation of the living units and accessory facilities into one wing. An application for a building permit to accomplish the same has already been submitted to the Town.

The second component of the development is the re-use of the remainder of the existing primary building and the construction of additional buildings for the development of 310 apartment units by CDC. The redevelopment of the remainder of the existing building (the core building, the middle and east wing and the chapel) will include 66 apartment units in the core building and the two wings and the creation of a community center-type of use within the former chapel. CDC will be constructing 244 apartments in newly constructed buildings located at the side of and to the rear of the existing buildings. In addition, CDC will develop both surface and garage parking to include 550 spaces, several outdoor landscaped and recreational areas, including a pool and a tennis court as well as walking paths in and through the undeveloped portion of the site.

The Applicants request that the following substitute standards become applicable to this SDD in lieu of those set forth in the RM-MS and other zoning regulations:

- 1. Minimum Front Yard Parking: Reduce minimum front yard parking requirement from 20' to 19'.
- 2. Parking Dimension: Reduce parking space width for non-compact spaces within a garage structure to 9 feet.
- 3. Parking Lot Landscaping: Allow the parking lot landscaping to be provided clustered at the boundaries of the parking lot rather than distributing them throughout the entire parking lot.
- 4. Maximum Horizontal Building Dimension: Increase the maximum horizontal building dimension to 635'.
- 5. Required Loading Spaces: Decrease required loading spaces for the development to 3.5.
- 6. Courtyard: Substitute distance standards as shown on the plans.
- 7. Signs: Substitute standards for number size, location and height as shown on the plans.

8. Fences: Substitute standards for height based on location as shown on the plans.

TRAFFIC AND PARKING CONSIDERATIONS:

Bubaris Traffic Associates ("BTA") has prepared a Site Traffic Evaluation with respect to the activities and uses included with in the Application. The BTA report is attached hereto as Enclosure G. The BTA report indicates that the proposed project should not adversely impact traffic operations in the area, nor should it alter the levels of service in the nearby intersections. Last, no traffic improvements are required as a result of the added traffic.

DESIGN AND LANDSCAPING ELEMENTS:

The design and layout of the site were dictated by the preservation and re-use of the existing buildings on the site and CDC's desire to preserve as much open space as possible. Significant time was spent with DRAC to minimize the impact of the new buildings from both the Park Road and Prospect Street perspectives. Most attention was paid to the new east building and its facades on both Park Road and Prospect Avenue. The portion of the new east wing that faces Park Road was designed to complement (but not necessarily mimic) the facade of the existing building. The Prospect Avenue façade was designed with architectural features that break up the façade to provide interest, minimize the appearance of its size and, again, to complement but not necessarily mimic the original buildings on the site. The south building is tucked in behind the existing buildings and, although of a greater height than the existing buildings, will not be visible from Park Road by virtue of the fact that the sites slopes to the south. In order to minimize the project's impact on the site, to minimize activities in the wetlands and regulated areas and to prevent any adverse impacts on stormwater, CDC elected to construct parking structures on the site, rather than provide all surface parking. The parking structures are tucked under both the new east wing and the south wing. 273 spaces are provided in the parking structures and 277 spaces are surface spaces.

The landscape design on the site was planned to accomplish several goals, which included compliance with the zoning requirements, preservation of existing landscape where possible, provision of appropriate screening and preservation the meadow and forest are on the south side of the property. The existing landscaping on Park Road and Prospect Avenue, that is essentially overgrown and scruffy, will be replaced with new landscaping and hardscape that will allow for appropriate screening while also creating a sense of place and providing aesthetic interest. The proposed landscaping and hardscape will also be carried along Prospect Avenue to the existing stream crossing. Parking lot landscaping has been clustered along the perimeter of the surface parking lots primarily for two reasons – to minimize increasing the area covered by pavement and to preserve the southern views across the meadow to the forest for the south-facing apartment units. Additional landscaping is also being provided along the west side of the property to provide screening from Ringgold Street of the proposed buildings and new parking areas.

WATER, SEWER AND STORMWATER CONSIDERATIONS:

Design Professionals, Inc. ("DPI") has prepared a Storm Drainage Report that is attached hereto as Enclosure H. In addition, DPI has also contacted The Metropolitan District and the Health Director regarding availability of water and sewer to serve the project. Letters from each are attached hereto as Enclosures I and J and indicate that both water and sewer are available to service the proposed development of the Property. The Storm Drainage Report indicates both that the peak rates of stormwater runoff discharging to neighboring properties for the 5-, 10-, 25-, and 100-year storm events will be less after development than prior to development. In addition, the proposed stormceptor unit will serve to remove suspended solids of runoff collected from the northerly and westerly parking areas before discharging to the proposed detention basin for the site. The report concludes that the proposed stormwater management design as presented in the Application will not pose any significant detrimental impacts to the environment surrounding the site.

NEIGHBORHOOD CONSIDERATIONS AND COMMUNITY OUTREACH:

The Applicant has retained Coursey & Company ("CC") to perform community outreach in conjunction with this project. As of the date hereof, CC has met with individual property owners and numerous neighborhood and civic organizations in both West Hartford and Hartford. These individual and group meetings will continue as the application process goes forward until all public hearings on the application shave been closed. A copy of a preliminary report is attached hereto as Enclosure F.

PURPOSE AND COMPLIANCE WITH POCD:

The Application is consistent with the goals and objectives of the Town's Plan of Conservation and Development, a discussion of which follows below.

<u>Housing</u>: The goal for housing in the POCD is to "enhance and maintain West Hartford's housing stock and encourage a diversity of housing types and costs. Enhance the beauty of our neighborhoods by encouraging streetscape improvements, including home preservation and the planting of mature and diverse trees." The proposed development will certainly enhance the Town's housing stock, providing new and interesting housing in both new and rehabilitated buildings. The proposed development will also enhance the beauty of the neighborhood by providing new fencing, lighting, landscaping, hardscaping and a relocated bus stop and through the preservation of open space.

<u>Economic Development</u>: The goal for economic development is to promote economic growth while retaining existing businesses and protecting the residential character of the surrounding neighborhoods. The proposed development will certainly promote economic development along the Park Road neighborhood, bringing hundreds of new residents into the neighborhood to patronize the existing businesses in the area. The Applicants have met numerous times with the

Park Road Association and believe that the Association is supportive of the positive economic impacts this project will have on the neighborhood

<u>Traffic and Transportation</u>: The goal for traffic and transportation is to promote a system that provides the best possible service, mobility, convenience and safety while reinforcing positive influences on the Town. The proposed development is ideally situated to provide both easy and convenient highway access without adversely impacting Town streets, traffic and circulation and to provide excellent access to public transportation, with a bus stop literally right outside the project's front door. The Applicant is proposing improvements that will relocate the bus stop, providing a safer location for those utilizing public transport while also providing safer traffic patterns at the Park Road and Prospect Avenue intersection.

<u>Historic Preservation</u>: The goal for historic preservation is to preserve, protect and enhance the architectural integrity and physical record of the history and growth of West Hartford, which includes a policy of promoting and enhancing the viability of historic resources for their continued use. The Sisters of St. Joseph have been located at this location in the Town of West Hartford for over 100 years, constructing the first building on the site in 1898. The structures on the site are distinctive and beautiful and this development will allow the preservation of the existing primary buildings on site as well as allowing the Sisters to maintain their presence in and connection with the Town of West Hartford. There are very few uses and even fewer users for such old and large buildings. The opportunity to have such a large resource both preserved and productively reused while maintaining the historic character of the property fits squarely within the Town's goals.

Open Space: The goal of open space is basically to preserve and expand open spaces. This development has been designed with that specific goal in mind. The Applicants are providing structured parking (at significantly more expense that surface parking), have condensed the development footprint on the site and are proposing less than one-half of the density that would be allowed on the site under the RM-MS zone. Once completed, approximately 75% of the site will remain open space.

FINDINGS:

The change of zone and the designation of the Property as an SDD to allow the Applicants to redevelop the existing buildings at the Property and to construct new buildings containing 310 apartment units to be owned by CDC and 36 residential living units to be owned by SSJC, together with all attendant parking (including garage structures), landscaping, lighting and signage is deemed appropriate for the following reasons as set forth in the Zoning Code Section 177-44B:

1. The proposed changes as set forth in the Application are in harmony with the overall objectives of the Comprehensive Plan as they will provide additional market-rate multi-family residential use without overcrowding the land, will preserve and enhance the existing buildings on the Property and provide an effective re-use thereof, will provide for significant open-space

allowing for adequate light, air and privacy and will benefit significantly this section of the Town.

- 2. The proposed SDD is superior to a plan possible under the regular standards of the Regulations because of the additional scrutiny allowed in the building design and layout process for multi-family. In addition, the minimal substitute standards in the design standards presented in the application will benefit the design and use of the Property by allowing for a more condensed development, thus retaining significantly more of the Property in a natural state and minimizing the impact on the neighbors from construction of the new buildings.
- 3. The proposed improvements are clearly in harmony with the neighborhood as a significant portion of the development is the retention and re-use of the existing 185,818 SF historic building. The new buildings are primarily oriented towards Prospect Avenue, which is a commercial street, and the rear of the property, where the existing vegetation on the south side of the property and the distance from Ringgold Street as well as the building orientation will result in little impact to the existing buildings in West Hartford. In addition, CDC has worked closely with DRAC to ensure that the materials used and the elevations of the new buildings will fit in with this area. This neighborhood is a mixture of commercial, multi-family and single family buildings and uses and the proposed uses continue the multi-family use of the area as well as bringing new liveliness to this area and having a significant beneficial impact on the businesses in the area. The proposed improvements will not have a deleterious impact on the character of this area or on the orderly permitted development of the adjacent residential and commercial properties.
- 4. The total density of the development in terms of floor area, land coverage and dwelling units will be significantly less than is allowed in the proposed RM-MS zone.

The proposed Ordinance, application fee and information required pursuant to Section 177-44 of the Zoning Ordinance are enclosed.

Respectfully submitted,

Sugar A Have

Updike, Kelly & Spellacy, P.C

Center Wevelopment Corporation

Its Attorney and Authorized Agent

Enclosures:

ENCLOSURE A – Application Letter signed by Owner

ENCLOSURE B – Descriptions of property subject to Zone Change and SDD Designation

ENCLOSURE C – Proposed Ordinance

ENCLOSURE D - Affidavit of Interest

ENCLOSURE E – Description of Proposed Uses

ENCLOSURE F – Community Outreach Report

ENCLOSURE G – BTA Site Traffic Evaluation

ENCLOSURE H – Storm Drainage Report

ENCLOSURE I – Letter from The Metropolitan District

ENCLOSURE J – Letter from West Hartford Director of Health

ENCLOSURE K – Application Fee Check made payable to Town of West Hartford

ENCLOSURE L – Plan set entitled "Arcadia Crossing, One Park Road, West Hartford, Connecticut, Zone Change & SDD Designation Application" prepared by

Design Professionals, Inc., et. al. dated October 14, 2015

ENCLOSURE A Application Letter signed by Owner

Provincial Office 27 Park Road West Hartford, Connecticut, 06119

October 12, 2015

Honorable Members of the West Hartford Town Council Town of West Hartford Town Hall 50 South Main Street West Hartford, CT 06107

RE: Change of Zone from R-6 to RM-MS and then to Special Development District for Proposed Conversion of Existing Building and Construction of New Buildings into 310 Apartment Units and Relocation of Existing 36 Residential Living Units at 27 Park Road and 14 Ringgold Street, West Hartford, Connecticut

Dear Mayor Slifka and Honorable Members of the Town Council:

The Sisters of St. Joseph Corporation is the owner of the property commonly known as 27 Park Road and 14 Ringgold Street, which is the subject of a zone change and SDD application submitted to the Town Council as described above.

This letter is provided to indicate the property owner's consent to the submittal of the zone change and SDD application submitted by Center Development Corporation and the property owner's participation in that process.

If there is any further information that we can provide, please do not hesitate to let us know.

Respectfully submitted, The Sisters of St. Joseph Corporation

By: <u>Seiter Elizabeth Anderson</u>, CSJ
Sister Elizabeth Anderson, CSJ

{\text{WO482973.1}} Telephone: 860-233-5734 Fax: 860-232-4649 Email: csjusa@yahoo.com Website: www.sistersofsaintjoseph.org

ENCLOSURE B Property Descriptions

PROPOSED ZONE CHANGE LINE

R-6 TO RM-MS

Beginning at a point in the easterly right-of-way line of Ringgold Street, said point being the southeasterly property corner of land N/F Sisters of St. Joseph Corp.

Thence in a westerly direction through Ringgold Street a distance of 26± feet to a point in the center line of Ringgold Road;

Thence in a northerly direction along the center line of Ringgold Street a distance of 47± feet to a point;

Thence in an easterly direction though Ringgold Street a distance of 27± feet to a point in the westerly property line of land N/F Sisters of St. Joseph Corp.

Thence S88°39'21"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 105.07 feet to a point;

Thence N51°59'37"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 112.84 feet to a point;

Thence N22°47'19"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 200.29 feet to a point;

Thence N73°34'38"W along the property line of N/F Sisters of St. Joseph Corp., a distance of 236.24 feet to a point on the easterly right-of-way line of Ringgold Street;

Thence in a westerly direction through Ringgold Street a distance of 27± feet to a point in the center line of Ringgold Street;

Thence in a northerly direction along the center line of Ringgold Street a distance of 354± feet to a point;

Thence in a northerly direction along the center line of Ringgold Street a distance of 399± feet to a point on the approximate existing southerly BG zone line in Park Road;

Thence in an easterly direction on Park Road along the approximate existing southerly BG zone line a distance of 915± feet to a point;

Thence in an easterly direction on Park Road along the approximate existing southerly BG zone line a distance of 79± feet to a point in the approximate Hartford & West Hartford town line;

Thence in a southerly direction along the approximate Hartford & West Hartford town line a distance of 821± feet to a point;

Thence in a westerly direction though Prospect Avenue a distance of 60± feet to a point being the southeasterly corner of land N/F Sisters of St. Joseph Corp.

Thence S89°26'23"W along the northerly property line of N/F Prospect Plaza Improvements LLC, a distance of 187.69 feet to a point;

Thence N88°46'07"W along the northerly property line of N/F Prospect Plaza Improvements LLC, a distance of 152.42 feet to an point;

Thence N88°46'08"W along the northerly property line of N/F Town of West Hartford, a distance of 198.06 feet to a point;

Thence N86°47'52"W along the northerly property line of N/F Town of West Hartford, a distance of 331.00 feet to an point;

Thence N88°39'21"W along the northerly property line of N/F Town of West Hartford, a distance of 168.96 feet to the point and place of beginning.

Boundary & Topographic plan prepared for: Sisters of St. Joseph Corp. Convent of Mary Immaculate 27 Park Road West Hartford, CT Date: 07/11/12 Revised 7-22-15 Sheet V1-01 and V1-02 Scale: 1" = 40' prepared by Design Professionals, Inc.

Area of zone change = 942,504 s.f., 21.64 acres.

LIMITS OF SDD DESIGNATION

Beginning at a point on the corner of the southerly right-of-way line of Park Road and the easterly right-of-way line of Ringgold Street, said point also being 14.94 feet northwesterly and 14.94 feet northeasterly of a concrete monument;

Thence S74°08'16"E along the southerly right-of-way line of Park Road a distance of 916.56 feet to a point;

Thence S02°18'36"W along the westerly right-of-way line of Prospect Avenue, a distance of 797.23 feet to a point;

Thence S89°26'23"W along the northerly property line of N/F Prospect Plaza Improvements LLC, a distance of 187.69 feet to a point;

Thence N88°46'07"W along the northerly property line of N/F Prospect Plaza Improvements LLC, a distance of 152.42 feet to an iron rod;

Thence N88°46'08"W along the northerly property line of N/F Town of West Hartford, a distance of 198.06 feet to a point;

Thence N86°47'52"W along the northerly property line of N/F Town of West Hartford, a distance of 331.00 feet to an iron rod;

Thence N88°39'21"W along the northerly property line of N/F Town of West Hartford, a distance of 168.96 feet to a point;

Thence N08°01'46"E along the easterly right-of-way line of Ringgold Street, a distance of 50.34 feet to a point;

Thence S88°39'21"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 105.07 feet to a point;

Thence N51°59'37"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 112.84 feet to a point;

Thence N22°47'19"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 200.29 feet to a point;

Thence N73°34'38"W along the property line of N/F Sisters of St. Joseph Corp., a distance of 236.24 feet to a point on the easterly right-of-way line of Ringgold Street;

Thence N08°01'46"E along the easterly right-of-way line of Ringgold Street, a distance of 354.15 feet to a point;

Thence N16°05'31"E along the easterly right-of-way line of Ringgold Street, a distance of 312.20 feet to the point and place of beginning;

Boundary & Topographic plan prepared for: Sisters of St. Joseph Corp. Convent of Mary Immaculate 27 Park Road West Hartford, CT Date: 07/11/12 Revised 7-22-15 Sheet V1-01 and V1-02 Scale: 1" = 40' prepared by Design Professionals, Inc.

Area of SDD Designation = 850,389 s.f., 19.52 acres.

ENCLOSURE C Proposed Ordinance

An Ordinance Amending the Zoning Regulations of the Town of West Hartford

BE IT ORDAINED BY THE TOWN COUNCIL OF WEST HARTFORD:

That the boundaries and districts shown on the Building Zone Map entitled "REVISED ZONING MAP, TOWN OF WEST HARTFORD, CONNECTICUT," which map is on file in the Town Clerk's Office of the Town of West Hartford, Connecticut, be and is hereby amended as follows:

The zoning district designation for that portion of 27 Park Road and 14 Ringgold Street as described below as "Zone Change Area" is hereby changed from R-6 to RM-MS and for that portion of 27 Park Road and 14 Ringgold Street described below "SDD Area" is then designated as a special development district, all in accordance with a set of plans entitled "Arcadia Crossing, One Park Road, West Hartford, Connecticut, Arcadia Crossing Renovation and Addition, Applicants: Center Development Corporation and Sisters of St. Joseph Corporation, Property Owner: Sisters of St. Joseph Corporation, Date: October 14, 2015" per the cover sheet, being sheet #1, which set of plans consists of 76 sheets, including the cover sheet, to allow construction of 310 apartment units and 36 residential living units with attendant parking, landscaping, lighting and signage all as set forth in the plans filed with this Application as those plans may be changed, approved by the West Hartford Town Council and filed on the West Hartford Land Records. The property for which this zone change and special development district is approved is a portion of 27 Park Road and 14 Ringgold Street and is more particularly bounded and described below, with reference being made to map or plan entitled: "Zone Change Plan, Arcadia Crossing Renovation and Addition, One Park Road, West Hartford, Connecticut Date: 10/14/15 Sheet ZA-1 Scale: 1" = 80" which map or plan is on file or to be filed in the Town Clerk's Office of the Town of West Hartford to which reference may be had.

The Zone Change Area is described as follows:

Beginning at a point in the easterly right-of-way line of Ringgold Street, said point being the southeasterly property corner of land N/F Sisters of St. Joseph Corp.

Thence in a westerly direction through Ringgold Street a distance of 26± feet to a point in the center line of Ringgold Road;

Thence in a northerly direction along the center line of Ringgold Street a distance of 47± feet to a point;

Thence in an easterly direction though Ringgold Street a distance of $27\pm$ feet to a point in the westerly property line of land N/F Sisters of St. Joseph Corp.

Thence S88°39'21"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 105.07 feet to a point;

Thence N51°59'37"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 112.84 feet to a point;

Thence N22°47'19"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 200.29 feet to a point;

Thence N73°34'38"W along the property line of N/F Sisters of St. Joseph Corp., a distance of 236.24 feet to a point on the easterly right-of-way line of Ringgold Street;

Thence in a westerly direction through Ringgold Street a distance of 27± feet to a point in the center line of Ringgold Street;

Thence in a northerly direction along the center line of Ringgold Street a distance of 354± feet to a point;

Thence in a northerly direction along the center line of Ringgold Street a distance of 399± feet to a point on the approximate existing southerly BG zone line in Park Road;

Thence in an easterly direction on Park Road along the approximate existing southerly BG zone line a distance of 915± feet to a point;

Thence in an easterly direction on Park Road along the approximate existing southerly BG zone line a distance of $79\pm$ feet to a point in the approximate Hartford & West Hartford town line;

Thence in a southerly direction along the approximate Hartford & West Hartford town line a distance of $821\pm$ feet to a point;

Thence in a westerly direction though Prospect Avenue a distance of 60± feet to a point being the southeasterly corner of land N/F Sisters of St. Joseph Corp.

Thence S89°26'23"W along the northerly property line of N/F Prospect Plaza Improvements LLC, a distance of 187.69 feet to a point;

Thence N88°46'07"W along the northerly property line of N/F Prospect Plaza Improvements LLC, a distance of 152.42 feet to an point;

Thence N88°46'08"W along the northerly property line of N/F Town of West Hartford, a distance of 198.06 feet to a point;

Thence N86°47'52"W along the northerly property line of N/F Town of West Hartford, a distance of 331.00 feet to an point;

Thence N88°39'21"W along the northerly property line of N/F Town of West Hartford, a distance of 168.96 feet to the point and place of beginning.

Boundary & Topographic plan prepared for: Sisters of St. Joseph Corp. Convent of Mary Immaculate 27 Park Road West Hartford, CT Date: 07/11/12 Revised 7-22-15 Sheet V1-01 and V1-02 Scale: 1" = 40' prepared by Design Professionals, Inc.

Area of zone change = 942,504 s.f., 21.64 acres.

The SDD Area is described as follows:

Beginning at a point on the corner of the southerly right-of-way line of Park Road and the easterly right-of-way line of Ringgold Street, said point also being 14.94 feet northwesterly and 14.94 feet northeasterly of a concrete monument;

Thence S74°08'16"E along the southerly right-of-way line of Park Road a distance of 916.56 feet to a point;

Thence S02°18'36"W along the westerly right-of-way line of Prospect Avenue, a distance of 797.23 feet to a point;

Thence S89°26'23"W along the northerly property line of N/F Prospect Plaza Improvements LLC, a distance of 187.69 feet to a point;

Thence N88°46'07"W along the northerly property line of N/F Prospect Plaza Improvements LLC, a distance of 152.42 feet to an iron rod;

Thence N88°46'08"W along the northerly property line of N/F Town of West Hartford, a distance of 198.06 feet to a point;

Thence N86°47'52"W along the northerly property line of N/F Town of West Hartford, a distance of 331.00 feet to an iron rod;

Thence N88°39'21"W along the northerly property line of N/F Town of West Hartford, a distance of 168.96 feet to a point;

Thence N08°01'46"E along the easterly right-of-way line of Ringgold Street, a distance of 50.34 feet to a point;

Thence S88°39'21"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 105.07 feet to a point;

Thence N51°59'37"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 112.84 feet to a point;

Thence N22°47'19"E along the property line of N/F Sisters of St. Joseph Corp., a distance of 200.29 feet to a point;

Thence N73°34'38"W along the property line of N/F Sisters of St. Joseph Corp., a distance of 236.24 feet to a point on the easterly right-of-way line of Ringgold Street;

Thence N08°01'46"E along the easterly right-of-way line of Ringgold Street, a distance of 354.15 feet to a point;

Thence N16°05'31"E along the easterly right-of-way line of Ringgold Street, a distance of 312.20 feet to the point and place of beginning;

Boundary & Topographic plan prepared for: Sisters of St. Joseph Corp. Convent of Mary Immaculate 27 Park Road West Hartford, CT Date: 07/11/12 Revised 7-22-15 Sheet V1-01 and V1-02 Scale: 1" = 40' prepared by Design Professionals, Inc.

Area of SDD Designation = 850,389 s.f., 19.52 acres.

ENCLOSURE D Affidavit of Interest

AFFIDAVIT OF INTEREST

The undersigned, being duly sworn, hereby deposes and says that, to the best of his ability:

The names and addresses of any persons firms or corporations having a direct or indirect interest in a personal or financial sense in the request by Center Development Corporation to change the zoning district designation of the property known as 27 Park Road and 14 Ringold Street (the "Property") to RM-MS and to subsequently change the zoning designation of the Property to SDD to allow the construction of 310 units of housing and 36 congregate care units are as follows::

Center Development Corporation (William N. Hubbard III, President) located at 1 Gateway Plaza #2, Port Chester, NY 10573; and

The Sisters of St. Joseph Corporation (Susan Cunningham, CSJ, President) with an office at 650 Willard Avenue, Newington, Connecticut 06111.

In Witness Whereof, the undersigned has executed this Affidavit on the _____ day of October, 2015.

Printed Name: William N. Hubbard III

STATE OF NEW YORK

COUNTY OF New York

Subscribed and sworn to before me this _____ day of October, 2015.

Votary Public

My Commission Expires:

JANE A. DWYER
Notary Public State of New York
No. 01DW4889935
Qualified in New York County
Commission Expires April 20, 2019

ENCLOSURE E Description of Proposed Uses

The proposed project consists of two primary proposed uses. The Sisters of Saint Joseph will own the west wing of the existing building and will be converting that into 36 residential units for vowed women religious and will have associated facilities necessary or useful for the support of the sisters living at the premises, such as kitchen and dining facilities, common rooms and a chapel, communal gardens and service facilities. The Sisters will maintain ownership of the courtyard to the west of the west wing and will have exclusive use of the parking spaces directly to the west of the west wing and a specific number of those located to the north on the west wing.

The remainder of the building and land will be owners by Center Development Corporation ("CDC") and will be developed into 310 apartment units with associated parking, landscaping and other amenities. CC will develop 66 apartment units in the remainder of the existing buildings on the site and will convert the chapel to a community center-type of use. CDC will also build approximately 292,122 SF of new building housing 244 apartment units and approximately 114,819 SF of new garage structure. CDC will also be developing resident amenities such as a swimming pool, courtyards, a tennis court and walking paths. The apartment breakdown is anticipated to be 41 studios, 113 one bedroom and 156 two bedrooms. There will be 550 parking spaces in total on the site, 273 of them located within the garage structures and 277 located on the surface parking.

ENCLOSURE F Community Outreach Report

Public Affairs Communications

PO Box 271834 * West Hartford, CT 06127 860 232-9800 * chuck@courseyco.com

October 14, 2015

TO:

West Hartford Town Planning and Zoning Commission

West Hartford Town Council

FROM:

Chuck Coursey

RE:

Preliminary Community Neighborhood Outreach Report

Sisters of St. Joseph/Arcadia Crossing 27 Park Road and 14 Ringgold Street

Please find a preliminary outreach summary of contacts with neighbors of the Arcadia Crossing Project/27 Park Road and 14 Ringgold Street. Outreach is a daily activity and will continue until all Town public hearings and meetings have been closed. Updated outreach reports will be provided at each public hearing.

A total of 95 residential homes and businesses, plus the Twin Oaks Condos and the Kane Street Shopping Plaza, are all being approached individually. A breakdown by street is as follows:

•	Park Road	18 homes/businesses
---	-----------	---------------------

West Beacon Street
Warren Terrace
Tobey Street
South Highland Street
Ringgold Street
2 homes
5 homes
8 homes
10 homes

Prospect Avenue
 7 homes/businesses

Gillette Street
Fairlawn Street
Crescent Street
Twin Oaks Condos
5 homes
2 homes
21 homes
100 Units

• Kane Street Shopping Plaza

27 Park Road and 14 Ringgold Street Neighborhood Outreach Report

Page Two

In addition, the following West Hartford and Hartford businesses and organizations have been met with and will be provided updates:

- Park Road Association
- Playhouse on Park
- West Hartford Chamber of Commerce Economic Development Committee
- West Hartford Fire Department
- Parkville Business Association (Hartford)
- Parkville Neighborhood Revitalization Zone (Hartford)
- Real Art Ways (Will K. Wilkins)
- Kessler Construction
- Mayflower Laundry Owners
- Damon's Tavern Property Owner
- Thomas Deller, Director of Development Services, City of Hartford

Please feel free to contact me at 860-232-9800 with any questions.

ENCLOSURE G BTA Site Traffic Evaluation

October 2, 2015

Mr. Peter DeMallie, Principal Design Professionals, Inc. 21 Jeffrey Drive South Windsor, CT 06074

Re: Site Traffic Evaluation Study

Proposed Arcadia Crossing Park Road at Prospect Avenue West Hartford, Connecticut

Dear Mr. DeMallie:

In collaboration with Design Professionals, Inc., we have worked together to prepare the subject Site Traffic Evaluation Study which addresses the proposal to convert the existing Sisters of Saint Joseph residential facility located at the southwest corner of the intersection of Park Road/Park Street at Prospect Avenue, in the Town of West Hartford, into a private low-rise apartment complex.

Introduction

Please refer to Exhibit 1 of the Appendix which locates this site with respect to the surrounding roadway network, and to Exhibit 2 of the Appendix which provides a Site Plan showing the proposed Arcadia Crossing residential facility.

It is our understanding that the facility will house a total of 346 apartment units, with 36 of these units set aside for the Sisters of Saint Joseph, and the remaining 310 units open for rental by the general public.

The site will be served by two, two-way, unsignalized site drives, with the North Site Drive intersecting the south side of Park Road about 750 feet west of Prospect Avenue, and the East Site Drive intersecting the west side of Prospect Avenue about 375 feet south of Park Road.

It is anticipated that the proposed residential development will be completed and fully occupied by mid-2017.

Study Scenarios

In conducting the traffic operational analyses that follow, three study scenarios were developed and considered:

- Existing 2014 AM and PM Peaks: This represents the existing conditions on the surrounding roadway network with the existing Sisters of Saint Joseph facility in operation and the year when the manual turning movement counts of the defined study intersections were conducted.
- Background 2017 AM and PM Peaks: This represents the no-build condition
 on the surrounding roadway network 3 years hence to when the subject
 development is planned to be completed and occupied. Existing 2014
 manual turning movement counts were increased by a factor of 2 percent
 per year for each of 3 years to yield these 2017 projections assuming normal
 background traffic growth based on data obtained from the Connecticut
 Department of Transportation (CTDOT).
- Combined 2017 AM and PM Peaks: This represents the build condition on the surrounding roadway network when it is assumed that the subject development will be completed and fully occupied.

Background Conditions

Given the nature of this development and the manner in which it interfaces with the surrounding roadway network, the selected study area for the subject development consists of the following intersections shown in the location map included as Exhibit 1 of the Appendix:

Park Road at South Highland Street:

This is a 3-way, unsignalized intersection with Park Road running east-west and South Highland Street as the north leg of the intersection. All approaches to this intersection are one lane wide, and the South Highland Street southbound approach is controlled by a Stop sign.

Park Road at Ringgold Street:

This is a 3-way, unsignalized intersection with Park Road running east-west and Ringgold Street as the south leg of the intersection. All approaches to this intersection are one lane wide, and the Ringgold Street northbound approach is controlled by a Stop sign.

Park Road at Proposed North Site Drive:

This will be a 3-way, unsignalized intersection with Park Road running east-west and the proposed North Site Drive as the south leg of the intersection. The Park Road eastbound and westbound approaches to this intersection will each remain one lane wide. The Proposed North Site Drive will have two inbound and two outbound lanes separated by a raised median, and the two outbound lanes will be controlled by a Stop sign.

Park Road and Park Street at Prospect Avenue:

This is a 4-way, signalized intersection with Park Road and Park Street running east-west and Prospect Avenue running north-south. The Town of West Hartford is located to the west of this intersection. The City of Hartford is located to the east of this intersection. The posted speed limit on all four legs of this intersection is 30 miles per hour. The Park Road eastbound approach is two lanes wide with one combination left/through lane and one combination through/right lane. The Park Street westbound approach is two lanes wide with one dedicated left-turn lane and one combination through/right lane. The Prospect Avenue northbound and southbound approaches are both two lanes wide with one combination left/through lane and one combination through/right lane. There are crosswalks across all four legs of this intersection. The traffic control signal at this intersection operates to provide five phases: the first is a Park Street westbound only phase to facilitate the left turns onto Prospect Avenue; followed by a Park Road eastbound and Park Street westbound phase for all movements; followed by an exclusive pedestrian phase when actuated; followed by a Prospect Avenue northbound only phase to facilitate the left turns onto Park Road; followed by a Prospect Avenue northbound and southbound phase for all movements.

Prospect Avenue at Proposed East Site Drive:

This will be a 3-way, unsignalized intersection with Prospect Avenue running north-south and the proposed East Site Drive as the west leg of the intersection. The Prospect Avenue northbound and southbound approaches to this intersection will each remain two lanes wide. The Proposed East Site Drive will have one inbound and two outbound lanes separated by a raised median, and the two outbound lanes will be controlled by a Stop sign.

Existing and Background Traffic Volumes

For the purpose of establishing existing and background traffic volumes for the subject study area, manual turning movement counts were conducted in the subject study area during the peak hours associated with the arrivals and departures for the proposed residential development. These peak hour periods were assumed to fall between 7:00 and 9:00 am for the weekday morning peak, and between 4:00 and 6:00 pm for the weekday evening peak. These counts were conducted on Monday, November 17, 2014.

Please refer to Exhibits 3 and 4 of the Appendix which graphically summarize the 2014 existing am and pm peak hour traffic volumes, respectively, that were measured for the subject study area.

Please refer to Exhibits 5 and 6 of the Appendix which graphically summarize the projected 2017 am and pm peak hour traffic volumes, respectively, for the subject study area, wherein all traffic volumes were increased by a 2 percent per year annual growth factor applied over 3 years to represent no-build conditions prior to the introduction of the new residential development.

Site-Generated Traffic Volumes and Distributions

For the purpose of estimating the likely trip distribution patterns for site-generated traffic traveling to and from the proposed residential development during the weekday commuter am and pm peak periods, we utilized the journey-to-work data made available in Town Profiles by the Department of Economic and Community Development (CT DECD) for each of the towns in Connecticut.

Please refer to Table A on the next page of this study which summarizes the journey-to-work patterns for residents of the Town of West Hartford, where it has been assumed that the new residents of the subject facility will also follow the same patterns. Also contained in Table A are the estimated likely routes to be traveled to and from the subject development given its location with respect to the surrounding roadway network.

Please refer to Table A which shows the following likely site-generated traffic distribution pattern:

•	To and from the North via Prospect Avenue:	35 percent
•	To and from the south via Prospect Avenue:	30 percent
•	To and from the West via Park Road:	20 percent
•	To and from the east via Park Street:	15 percent

Please refer to Exhibits 7 and 8 of the Appendix which graphically summarize the estimated site-generated traffic distribution patterns for the subject study area.

For the purpose of estimating site-generated peak hour traffic volumes for the subject development, we utilized the trip generation equations from ITE's (Institute of Transportation Engineers) <u>Trip Generation Manual</u>. This universally recognized data source provide trip generation data for many land uses throughout the nation, wherein for residential apartment developments the independent variable is the number of existing and/or proposed apartment units.

Please refer to Exhibit 9 of the Appendix which provides trip generation calculations for both the existing 36 units that will be reserved for the Sisters of Saint Joseph's (see Exhibit 9A) and for the proposed 310 units that will be developed for the general public (see Exhibit 9B).

Please refer to Table B on the page following the next page of this study which summarizes the trip generation estimates for the subject proposal. A trip is defined as a one-way vehicular movement traveling either to or from the development.

Table A

Distribution of Town Residents Commuting for Employment FROM

Town of West Hartford

Source: DECD Town Profiles, October 2014

Likely Routes to be Traveled

West Hartford Resident Commuters To	Number	Percent of Total	To/From North via <u>Prospect Avenue</u>	To/From South via Prospect Avenue	To/From West via <u>Park Road</u>	To/From East via <u>Park Street</u>
Hartford	7,687	40.0%	12.0%	14.0%		14.0%
West Hartford	4,789	24.9%	7.5%	8.7%	8.7%	
Farmington	1,846	9.6%		4.8%	4.8%	
East Hartford	1,038	5.4%	5.4%			
New Britain	925	4.8%		2.4%	2.4%	
Bloomfield	905	4.7%	4.7%			
Windsor	783	4.1%	4.1%			
Bristol	635	3.3%		1.7%	1.7%	
Manchester	609	3.2%	3.2%			
			-			-
Total:	19,217	100%	36.8%	31.6%	17.6%	14.0%
		Call:	35%	30%	20%	15%

Bubaris Traffic Associates October 2015

Table B
Trip Generation Estimates
Proposed Arcadia Crossing
Park Road at Prospect Avenue
West Hartford, Connecticut

	Existing Apartments	Proposed Apartments	Total Apartments
	(36 Units)	(310 Units)	(346 Units)
Weekday AM Peak			
In	5	30	35
<u>Out</u>	<u>19</u>	<u>121</u>	<u>140</u>
Total	24	151	175
Weekday PM Peak			
In	19	124	143
<u>Out</u>	<u>11</u>	<u>70</u>	<u>81</u>
Total	30	194	224

Bubaris Traffic Associates October 2015 From Table B, it is estimated that the subject development will generate about 175 trips per hour during the weekday am peak hour, and about 224 trips per hour during the weekday pm peak hour.

Typically, there are two weekday am peak hours in the morning and two pm peak hours in the evening since the commuting traffic to and from a residential complex usually extend over two hours each depending on how far the places of employment are located from the place of residence.

Please refer to Exhibits 10 and 11 of the Appendix which graphically depict the estimated am and pm peak hour site-generated traffic volumes distributed throughout the subject study area based on the estimated trip distributions from Exhibits 7 and 8, applied to the estimated hourly trip generation estimates from Exhibit 9.

Operations Analysis

2014 existing weekday am and pm peak hour analyses for the existing development are based on the peak hour traffic volumes shown as Exhibits 3 and 4, respectively, of the Appendix.

2017 background (no-build) weekday am and pm peak hour analyses with only the existing development in place, 3 years hence, are based on the peak hour traffic volumes shown as Exhibits 5 and 6, respectively, of the Appendix.

2017 combined (build) weekday am and pm commuter peak hour analyses, representing conditions when the proposed new residential facility is in place, are based on the peak hour traffic volumes shown as Exhibits 12 and 13 of the Appendix, respectively. Exhibits 12 and 13 were developed by combining the background, no-build traffic volumes from Exhibits 5 and 6 with the estimated site-generated traffic volumes from Exhibits 10 and 11.

Intersection operational analyses were performed for the defined study intersections utilizing the methodology described in the latest edition of <u>Highway Capacity Manual</u>, Special Report 209, Transportation Research Board, 1985, updated to 2010. Application of this methodology was facilitated by use of <u>Synchro Analysis Software</u>, developed by the Trafficware Corporation, Version 8, 2013. Operational analyses are utilized to determine a Level of Service (LOS) for a given intersection operating under either signalized or unsignalized control.

In the case of <u>signalized intersections</u> similar to the signalized intersection of Park Road/Park Street at Prospect Avenue, Level of Service (LOS) is defined in terms of control delay, which is a measure of driver discomfort, frustration, increased fuel consumption, and lost of travel time. The delay experienced by a motorist is comprised of a number of factors that relate to control, geometric, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions in the absence of traffic control, geometric delay, any incidents, and

any other vehicles. Specifically, LOS criteria for traffic signals are stated in terms of the average control delay per vehicle, typically for a 15-minute analysis period. Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the green ratio, and the volume-to-capacity (v/c) ratio for the lane group. In the case of signalized intersections, the

Level of Service for each approach is computed, and an overall Level of Service for the entire intersection is determined. In today's environment, Levels of Service C to D are considered acceptable, and Levels of Service A to B are seldom achieved at signalized intersections.

Please refer to Exhibit 14 in the Appendix, which provides details on the definitions of Levels of Service for <u>signalized intersections</u>.

In the case of unsignalized intersections similar to the majority of the study intersections, Level of Service (LOS) is defined in terms of the average control delay for the approach or movement evaluated. Control delay involves movements at slower speeds and stops on intersection approaches as vehicles move up in the queue or slow down upstream of an intersection. The delay experienced by a motorist is comprised of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference time that would result during base conditions in the absence of incident, control, traffic, or geometric delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. At two-way stop-controlled and all-way stopcontrolled intersections, control delay is the total elapsed time from a vehicle joining the queue until its departure from the stopped position at the head of the queue. The control delay also includes the time required to decelerate to a stop and to accelerate to the free-flow speed. Level of Service for a one-way or twoway stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a one-way or two-way stop-controlled intersection is not defined for the intersection as a whole. In today's environment, Levels of Service D to F are common and are often experienced on minor street approaches to major streets carrying relatively high traffic volumes.

Please refer to Exhibit 15 in the Appendix, which provides details on the definitions of Levels of Service for <u>unsignalized intersections</u>.

The results of the operational analyses, which compare 2014 existing, 2017 background (no-build), and 2017 combined (build) conditions, are summarized in Table C on the next page of this study.

Table C
Summary of Traffic Operations Analysis
Levels of Service
Proposed Arcadia Crossing
West Hartford, Connecticut

	Existin AM Peak	g 2014 PM Peak	<u>Backgro</u> AM Peak	und 2017 PM Peak	Combin AM Peak	ed 2017 PM Peak
Park Road at South Highland Street						
Park Road eastbound left South Highland Street southbound approach	LOS A LOS B	LOS A LOS B	LOS A LOS B	LOS A LOS B	LOS A LOS B	LOS A LOS C
Park Road at Ringgold Street						
Park Road westbound left Ringgold Street northbound approach	LOS A LOS B	LOS A LOS B	LOS A LOS B	LOS A LOS B	LOS A LOS B	LOS A LOS B
Park Road at North Site Drive						
Park Road westbound (inbound) left North Site Drive northbound (outbound) approach	LOS A LOS B	LOS A LOS B	LOS A LOS B	LOS A LOS B	LOS A LOS B	LOS A LOS B
Park Road at Prospect Avenue						
Park Road eastbound approach Park Road westbound approach Prospect Avenue northbound approach Prospect Avenue southbound approach - OVERALL -	LOS C LOS B LOS C - LOS C -	LOS C LOS C LOS B LOS C	LOS C LOS B LOS B LOS C	LOS C LOS B LOS C - LOS C -	LOS C LOS C LOS B LOS C	LOS C LOS C LOS C LOS C
Prospect Avenue East Site Drive						
Prospect Avenue northbound (inbound) left East Site drive eastbound (outbound) approach	GLANDS WEIGHT		qualitation	_	LOS A LOS B	LOS A LOS C

Bubaris Traffic Associates October 2015 The computer-generated worksheets for these operational analyses are included as Exhibits 16 through 21of the Appendix as follows:

- Exhibit 16 2014 Existing AM Peak
- Exhibit 17 2014 Existing PM Peak
- Exhibit 18 2017 Background (no-build) AM Peak
- Exhibit 19 2017 Background (no-build) PM Peak
- Exhibit 20 2017 Combined (build) AM Peak
- Exhibit 21 2017 Combined (build) PM Peak

A review of Table C shows that levels of service in the year 2014 of existing traffic operations for the subject study intersections are very good to excellent levels of service A and B for all the unsignalized study intersections, and overall level of service C (considered good and average) for the signalized intersection of Park Road/Park Street at Prospect Avenue.

A review of Table C also shows that levels of service in the year 2017 of background (no-build) traffic operations for the subject study intersections continue at the same very good to excellent levels of service A and B for all the unsignalized study intersections, and overall level of service C (considered good and average) for the signalized intersection of Park Road/Park Street at Prospect Avenue.

Finally, a review of Table C also shows that levels of service in the year 2017 of combined (build) traffic operations for the subject study intersections, WITH the introduction of the new residential development, will continue to show essentially the same satisfactory levels of service A (excellent) to C (good) for all the study intersections, with only slight changes (i.e., change from LOS B to LOS C during the weekday pm peak for the South Highland Street southbound approach at Park Road) and for the Prospect Avenue northbound approach at Park Road/Park Street. Additionally, the new East Site Drive will operate at levels of service A (considered excellent) to C (considered good) during the two commuter peaks.

Therefore, the proposed new Arcadia Crossing residential development should not have an adverse impact on traffic operations that would otherwise exist within the defined study area without the subject development.

Sight Line Analysis

A review was made of available sight line distances to and from both the North and East Site Drive locations and, although not measured, found to be satisfactory for the posted speed limits of 30 miles per hour on both streets which usually suggests 85th percentile speeds of 40 miles per hour and sight line requirement of 445 feet.

Conclusions

It is the professional opinion of Bubaris Traffic Associates that the proposed Arcadia Crossing residential development, to be located at the southwest quadrant of the intersection of Park Road/Park Street at Prospect Avenue, on the site of the existing Sisters of Saint Joseph facility, in the Town of West Hartford, should not adversely impact traffic operations on the surrounding roadway network in the year 2017 when full occupancy of the subject development is expected.

Operational analyses indicate that the proposed development will essentially not alter the satisfactory levels of service that would otherwise be in place without the introduction of the new subject residential facility.

Improvements in either geometrics or traffic control are not deemed necessary to accommodate the anticipated site-generated traffic volumes to be added to the surrounding roadway network by the proposed development.

Available sight lines from the proposed site drive locations on Park Road and at Prospect Avenue appear to be satisfactory from field views conducted in the study area.

Very truly yours, Bubaris Traffic Associates

imes G. Bubais

James G. Bubaris, P.E. Conn. Reg. No. 9203 Principal

Cc:

Mr. Andrew J. Krar, P.E. Design Professionals, Inc. 21 Jeffrey Drive South Windsor, CT 06074

Site Traffic Evaluation Study Proposed Arcadia Crossing Prospect Avenue at Park Road West Hartford, Connecticut

Appendix

Table of Contents

Exhibit 1	Location Maps
Exhibit 2	Site Plan
Exhibit 3	Existing 2014 AM Peak
Exhibit 4	Existing 2014 PM Peak
Exhibit 5	Background 2017 AM Peak
Exhibit 6	Background 2017 PM Peak
Exhibit 7	Site-Generated AM Peak Traffic Distributions
Exhibit 8	Site-Generated PM Peak Traffic Distributions
Exhibit 9	Trip Generation Estimates for Apartments
Exhibit 10	Site-Generated AM Peak Hour Volumes
Exhibit 11	Site-Generated PM Peak Hour Volumes
Exhibit 12	Combined 2017 AM Peak
Exhibit 13	Combined 2017 PM Peak
Exhibit 14	Definitions of Levels of Service – Signalized Intersections
Exhibit 15	Definitions of Levels of Service - Unsignalized Intersections
Exhibit 16	Traffic Operations Analysis Worksheets Existing 2014 AM Peak
Exhibit 17	Traffic Operations Analysis Worksheets Existing 2014 PM Peak

(continued)

(continued)

Exhibit 18	Traffic Operations Analysis Worksheets Background 2017 AM Peak
Exhibit 19	Traffic Operations Analysis Worksheets Background 20175 PM Peak
Exhibit 20	Traffic Operations Analysis Worksheets Combined 2017 AM Peak
Exhibit 21	Traffic Operations Analysis Worksheets Combined 2017 PM Peak

Exhibit 1 Location Maps

Exhibit 2 Site Plan

Exhibit 9
Trip Generation Estimates for Apartments

APARTMENTS-LOW	RISE*
(2012)	

Exhibit 9A

SUMMARY OF TRIP GENERATION CALCULATIONS

SOURCE: TRIP GENERATION REPORT, INSTITUTE OF TRANSPORTATION ENGINEERS, 9th Edition, 2012

LAND USE: APARTMENTS-CODE #2: MENTS-CODE #221

PROJECT:

Arcadia Crossing, Existing Units

West Hartford, Connecticut

NUMBER OF APARTMENT DWELLING UNITS:

36

TIME PERIOD	ITE TRIP GENERATION EQUATION	TOTAL TRIPS	INBOUND	OUTBOUND
AVERAGE WEEKDAY	T = 6.59 (X) 50 % INBOUND * 50 % OUTBOUND	241	120	120
PEAK HOUR 7 TO 9 AM	LN (T) = 0.82 LN (X) + 0.23 21 % INBOUND * 79 % OUTBOUND	24	5	19
PEAK HOUR 4 TO 6 PM	LN (T) = 0.88 LN (X) + 0.16 65 % INBOUND * 35 % OUTBOUND	27	18	10
WEEKDAY AM PEAK HOUR OF GENERATOR	LN (T) = .85 LN (X) + 0.14 20 % INBOUND * 80 % OUTBOUND	24	5	19
WEEKDAY PM PEAK HOUR OF GENERATOR	LN (T) = 0.86 LN (X) + 0.33 64 % INBOUND * 36 % OUTBOUND	30	19	11
AVERAGE SATURDAY	LN (T) = 0.91 LN (X) + 2.44 50 % INBOUND * 50 % OUTBOUND	299	150	150
SATURDAY PEAK HOUR OF GENERATOR	LN (T) = .82 LN (X) + 0.41 54 % INBOUND * 46 % OUTBOUND	28	15	13
AVERAGE SUNDAY	LN (T) = 0.92 LN (X) + 2.23 50 % INBOUND * 50 % OUTBOUND	251	126	126
SUNDAY PEAK HOUR OF GENERATOR	LN (T) = 0.79 LN (X) + 0.53 53 % INBOUND * 47 % OUTBOUND	29	15	14

APARTMENTS-	LOW	RISE*
(2012)		

Exhibit 9B

SUMMARY OF TRIP GENERATION CALCULATIONS

SOURCE: TRIP GENERATION REPORT, INSTITUTE OF TRANSPORTATION ENGINEERS, 9th Edition, 2012

LAND USE: APARTMENTS-CODE #2: MENTS-CODE #221

PROJECT:

Arcadia Crossing, Proposed Units

West Hartford, Connecticut

NUMBER OF APARTMENT DWELLING UNITS:

310

TIME PERIOD	ITE TRIP GENERATION EQUATION	TOTAL TRIPS	INBOUND	OUTBOUND
AVERAGE WEEKDAY	T = 6.59 (X) 50 % INBOUND * 50 % OUTBOUND	2074	1037	1037
PEAK HOUR 7 TO 9 AM	LN (T) = 0.82 LN (X) + 0.23 21 % INBOUND * 79 % OUTBOUND	139	29	110
PEAK HOUR 4 TO 6 PM	LN (T) = 0.88 LN (X) + 0.16 65 % INBOUND * 35 % OUTBOUND	183	119	64
WEEKDAY AM PEAK HOUR OF GENERATOR	LN (T) = .85 LN (X) + 0.14 20 % INBOUND * 80 % OUTBOUND	151	30	121
WEEKDAY PM PEAK HOUR OF GENERATOR	LN (T) = 0.86 LN (X) + 0.33 64 % INBOUND * 36 % OUTBOUND	193	124	70
AVERAGE SATURDAY	LN (T) = 0.91 LN (X) + 2.44 50 % INBOUND * 50 % OUTBOUND	2122	1061	1061
SATURDAY PEAK HOUR OF GENERATOR	LN (T) = .82 LN (X) + 0.41 54 % INBOUND * 46 % OUTBOUND	166	90	77
AVERAGE SUNDAY	LN (T) = 0.92 LN (X) + 2.23 50 % INBOUND * 50 % OUTBOUND	1822	911	911
SUNDAY PEAK HOUR OF GENERATOR	LN (T) = 0.79 LN (X) + 0.53 53 % INBOUND * 47 % OUTBOUND	158	84	74

EXHIBIT 14

LEVEL OF SERVICE CRITERIA SIGNALIZED INTERSECTIONS

SOURCE: <u>HIGHWAY CAPACITY MANUAL (HCM)</u>, 2010 TRANSPORTATION RESEARCH BOARD (1)

Level of Service for **signalized intersections** is defined in terms of control delay, which is a measure of driver discomfort, frustration, increased fuel consumption, and lost travel time. The delay experienced by a motorist is comprised of a number of factors that relate to control, geometric, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Specifically, LOS criteria for traffic signals are stated in terms of the average control delay per vehicle, typically for a 15-minute analysis period. Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the green ratio, and the volume-to-capacity (v/c) ratio for the lane group.

In the case of **signalized intersections**, the Level of Service for each approach is computed, and an overall Level of Service for the entire intersection is determined.

Levels of Service (LOS) for signalized intersections are defined as follows:

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (SECONDS)	CONDITION
LOSA	<u><</u> 10	LOW DELAY
LOS B	> 10 TO 20	SHORT DELAY
LOS C	> 20 TO 35	AVERAGE DELAY
LOS D	> 35 TO 55	CONGESTION NOTICEABLE
LOSE	> 55 TO 80	LIMIT OF ACCEPTABLE DELAY
LOS F	> 80	UNACCEPTABLE

In today's environment, Levels of Service C to D are considered acceptable, and Levels of Service A to B are seldomly achieved at signalized intersections.

(1) HCM, Exhibit 16-2.

EXHIBIT 15

LEVEL OF SERVICE CRITERIA UNSIGNALIZED INTERSECTIONS

SOURCE: <u>HIGHWAY CAPACITY MANUAL (HCM)</u>, 2010 TRANSPORTATION RESEARCH BOARD (1)

Level of Service for **unsignalized intersections** similar to the study intersections is defined in terms of the average control delay for the approach or movement evaluated. Control delay involves movements at slower speeds and stops on intersection approaches as vehicles move up in the queue or slow down upstream of an intersection.

The delay experienced by a motorist is comprised of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference time that would result during base conditions in the absence of incident, control, traffic, or geometric delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

At two-way stop-controlled and all-way stop-controlled intersections, control delay is the total elapsed time from a vehicle joining the queue until its departure from the stopped position at the head of the queue. The control delay also includes the time required to decelerate to a stop and to accelerate to the free-flow speed.

Level of Service (LOS) for a two-way stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS is **not defined** for the intersection as a whole.

Level of Service (LOS) for an all-way stop-controlled intersection is determined by the computed or measured control delay and is defined for all movements. A LOS **is then defined** for the intersection as a whole.

Levels of Service (LOS) for unsignalized intersections are defined as follows:

LEVEL OF SERVICE	AVERAGE CONTROL DELAY PER VEHICLE (SECONDS)	CONDITION
LOS A	0 TO 10	LITTLE OR NO DELAY
LOS B	> 10 TO 15	SHORT DELAY
LOS C	> 15 TO 25	AVERAGE DELAY
LOS D	> 25 TO 35	LONG DELAY
LOS E	> 35 TO 50	VERY LONG DELAY
LOS F	> 50	EXTREME DELAY

In today's environment, Levels of Service D to F are common and are often experienced on minor street approaches to major streets carrying relatively high traffic volumes.

(1) HCM, Exhibits 17-2 and 17-22.

Exhibit 16
Traffic Operations Analysis Worksheets
Existing 2014 AM Peak

Intersection		No.	100	Pilali			198			SANGE SIL	35
Int Delay, s/veh	1.8										
**											
Movement	EBL	EBT	etig:	635	WBT	WE	BR	SBL	SBR		1
Vol, veh/h	34	401			147		5	41	24		
Conflicting Peds, #/hr	0	0			()	0	0	0	l	
Sign Control	Free	Free			Free	e Fr	ee	Stop	Stop	l	
RT Channelized	_	None				- No	ne	_	None	!	
Storage Length	2	84			33			0	-		
Veh in Median Storage, #	្	0			()	-	0			
Grade, %	-	0			()	-	0			
Peak Hour Factor	99	99			95	5	95	90	90	1	
Heavy Vehicles, %	2	2				2	2	2	2		
Mymt Flow	34	405			155	5	5	46	27	•	
Major/Minor	Major1	NOTE:	Z186	SUNCE	Major2	2	CHES	Minor2	POPER SOLIT	B31/4/64	di
Conflicting Flow All	160	0					0	631	157		
Stage 1	2	(4)			- 89	-		157		e:	
Stage 2	2	0.00			33	20	2	474		£8	
Critical Hdwy	4.12					_	-	6.42	6.22)	
Critical Hdwy Stg 1	-					20	-	5.42	29	8	
Critical Hdwy Stg 2	12				89	20	-	5.42	29		
Follow-up Hdwy	2.218	_			10	22		3.518	3.318	}	
Pot Cap-1 Maneuver	1419				133	20	$\hat{\boldsymbol{x}}_{i}$	445	889)	
Stage 1	-	-				-		871		0	
Stage 2	2				133	23		626	- 3	8	
Platoon blocked, %		_				-	-				
Mov Cap-1 Maneuver	1419					-		431	889)	
Mov Cap-2 Maneuver		*					-	431		8	
Stage 1	-	-					\dot{x}	871	100		
Stage 2	-	(4)				- :		607	9	€.	
-											
Approach	EB	2128	STA:	TINE	WE	3	and.	SB	Maria .	In the Wall	
HCM Control Delay, s	0.6							12.8			
HCM LOS								В			
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBL	n1			SALE WATER	SEA.	SEE VALUE	
Capacity (veh/h)	1419	in the state of	4,520		32						
HCM Lane V/C Ratio	0.024	-	. 5		36						
	7.6	0	20		2.8						
HCM Control Delay (s) HCM Lane LOS	7.0 A	A	25	= 1.	2.0 B						
HCM 25th %tile Q(veh)	0	M	25	g	0						
LICINI ADRI WRIE (VIAELI)	U			-	U						

Intersection		200		S Gall			STORES	reflect bill	Hegy
	0.8								
		LUI	EBR	WBL	WBT	NBL	NBR		
Movement		EBT 435	7	12	149	5	17		
Vol, veh/h		433	Ď	0	0	0	0		
Conflicting Peds, #/hr		Free	Free	Free	Free	Stop	Stop		
Sign Control RT Channelized		-	None	-	None	-	None		
Storage Length		0.0	IVOILG		110/10	0	_		
/eh in Median Storage, #		0		_	0	0	-		
Grade, %		0		_	0	0	-		
Peak Hour Factor		99	99	95	95	61	61		
leavy Vehicles, %		2	2	2		2	2		
Nymt Flow		439	7	13	157	8	28		
MALLIF LIOM		400	,						
Major/Minor	M	lajor1	Neis	Major2	ESU:	Minor1			
Conflicting Flow All		0	0	446	0	625	443		
Stage 1			_			443			
Stage 2		_	_		-	182			
Critical Hdwy			2	4.12	-	6.42	6.22		
Critical Hdwy Stg 1			20			5.42			
Critical Howy Stg 2		-	12	***	-	5.42			
Follow-up Hdwy		-	- 1	2.218	<u></u>	3.518	3.318		
Pot Cap-1 Maneuver			- 2	1114	-	449	615		
Stage 1		_	2.5	- 3	2 8	647			
Stage 2		120	1 23	-		849			
Platoon blocked, %			-		*				
Mov Cap-1 Maneuver		_	-	1114	-	443	615		
Mov Cap-2 Maneuver					*	443			
Stage 1		_	2	100	-	647			
Stage 2			-	100		838	-		
		- CD		MD		NB	NAME OF TAXABLE PARTY.	EUTS OF STREET	NUCCO
Approach	The second	EB		WB		11.8			
HCM Control Delay, s				0.6		11.0 B			
HCM LOS						В			
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL WBT	lakta (antestanto.			No.
Capacity (veh/h)	565	-	-	1114 -					
HCM Lane V/C Ratio	0.064		_	0.011					
HCM Control Delay (s)	11.8		_	8.3)				
HCM Lane LOS	В			A A					
HCM 95th %tile Q(veh)	0			0					
TOTAL DOG! TOTAL CALLADA									

Intersection	100		AND I	Mary Mary	ENE H			
Int Delay, s/veh	0.3							
Movement	0.030000	EBT	EBR	W	L WBT	NBL	NBR	
Vol, veh/h		452	4		1 176	5	12	
Conflicting Peds, #/hr		0	0		0 0	0	0	
Sign Control		Free	Free	Fre	e Free	Stop	Stop	
RT Channelized		_	None		- None	-	None	
Storage Length		*			0 -	0	*	
/eh in Median Storage, #	ŧ	0			- 0	0	-	
Grade, %		0	22		- 0	0	-	
eak Hour Factor		99	100	10	0 99	92	92	
leavy Vehicles, %		2	2		2 2	2	2	
/lvmt Flow		457	4		1 178	5	13	
				3.4.	0	\$ 80 A	- DECEMBER OF THE PERSON NAMED IN COLUMN TO	MEDICAL DESCRIPTION OF THE PARTY OF THE PART
// // // // // // // // // // // // //	N	lajor1	CALCO.	Majo		Minor1	450	
Conflicting Flow All		0	0	46	1 0	639	459	
Stage 1		-	54			459	-	
Stage 2		20				180		
Critical Hdwy		-	-	4.	2 -	6.42	6.22	
Critical Hdwy Stg 1		*	-		-	5.42	~	
Critical Hdwy Stg 2		*	-			5.42		
follow-up Hdwy			-	2.2		3.518	3.318	
Pot Cap-1 Maneuver		-	-	110	Ю -	440	602	
Stage 1		*	*		* *	636		
Stage 2		9			8	851		
Platoon blocked, %		*					200	
Nov Cap-1 Maneuver		-		110)0 =	440	602	
Nov Cap-2 Maneuver		*			* *	440		
Stage 1		-			* -	636	5	
Stage 2		-	-		* *	850		
pproach	To the last to	EB	33	W	В	NB		
HCM Control Delay, s		ten led			0	11.9		
ICM LOS					•	В		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL WE	T	SERVICE STATE	NA VA	
Capacity (veh/h)	543	-	-	1100	-			
ICM Lane V/C Ratio	0.034	-	-	0.001	*:			
ICM Control Delay (s)	11.9		-	8.3	0			
HCM Lane LOS	В	4.5	-	Α	Α			
HCM 95th %tile Q(veh)	0			0				

7. Prospect Avenue	C I an	· roac								1	ŀ	,
	*		*	1	4-	•	1	Ť	1	-	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SOR
Lane Configurations		414	7	M	1>			4%			44	
Volume (vph)	72	238	130	76	104	69	46	263	37	31	281	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		75	0		0	0		0	0		0
Storage Lanes	1		1	1		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		1.00		0.98				1.00			1.00	
Frt			0.850		0.940			0.984			0.988	
Flt Protected		0.989		0.950				0.993			0.995	
Satd. Flow (prot)	0	3500	1583	1770	1751	0	0	3458	0	0	3479	0
Flt Permitted		0.835		0.950				0.892		_	0.874	
Satd. Flow (perm)	0	2947	1583	1736	1751	0	0	3102	0	0	3053	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			140		41			14			8	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		615			300			400			300	
Travel Time (s)		14.0			6.8			9.1			6.8	
Confl. Peds. (#/hr)	10			10			10			10		2.00
Peak Hour Factor	0.93	0.93	0.93	0.99	0.99	0.99	0.89	0.89	0.89	0.96	0.96	0.96
Adj. Flow (vph)	77	256	140	77	105	70	52	296	42	32	293	27
Shared Lane Traffic (%)											0.50	0
Lane Group Flow (vph)	0	333	140	77	175	0	0	390	0	.0	352	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane										4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15	_	9	15		9
Number of Detectors	1	2	1	1	2		1	_ 2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel								0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel					_						0.0	
Detector 2 Extend (s)		0.0			0.0			0.0		5	0.0	
Turn Type	Perm	NA	Perm	Split	NA		Split	NA		Perm	NA	
Protected Phases		2		1	1		7	7			8	

Arcadia Crossing, Park at Prospect, West Hartford 9/30/2015 Existing Weekday AM Peak Bubaris Traffic Associates

	×	-	*	1	-	4	4	1	1	1	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2		2			8		8	8	
Detector Phase	2	2	2	1	1		7	7		8	8	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	6.0	6.0		3.0	3.0		12.0	12.0	
Minimum Split (s)	18.0	18.0	18.0	9.0	9.0		6.0	6.0		18.0	18.0	
Total Split (s)	23.0	23.0	23.0	12.0	12.0		9.0	9.0		22.0	22.0	
Total Split (%)	25.6%	25.6%	25.6%	13.3%	13.3%		10.0%	10.0%		24.4%	24.4%	
Maximum Green (s)	17.0	17.0	17.0	9.0	9.0		6.0	6.0		16.0	16.0	
Yellow Time (s)	4.0	4.0	4.0	3.0	3.0		3.0	3.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	0.0	0.0		0.0	0.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)		6.0	6.0	3.0	3.0			3.0			6.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?										Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	None	None		None	None		Min	Min	
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		13.8	13.8	8.1	28.1			22.7			13.3	
Actuated g/C Ratio		0.22	0.22	0.13	0.44			0.36			0.21	
v/c Ratio		0.52	0.31	0.34	0.22			0.34			0.54	
Control Delay		27.1	7.6	33.5	11.1			15.6			27.4	
Queue Delay		0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay		27.1	7.6	33.5	11.1			15.6			27.4	
LOS		С	Α	С	В			В			С	
Approach Delay		21.3			17.9			15.6			27.4	
Approach LOS		С			В			В			С	
Queue Length 50th (ft)		52	0	24	24			42			55	
Queue Length 95th (ft)		137	48	86	102			124			143	
Internal Link Dist (ft)		535			220			320			220	
Turn Bay Length (ft)			75									
Base Capacity (vph)		817	540	260	777			1151			803	
Starvation Cap Reductn		0	0	0	0			0			0	
Spillback Cap Reductn		0	0	0	0			0			0	
Storage Cap Reductn		0	0	0	0			0			0	
Reduced v/c Ratio		0.41	0.26	0.30	0.23			0.34			0.44	

Intersection Summary

Area Type:

Other

Cycle Length: 90

Actuated Cycle Length: 63.5

Natural Cycle: 75

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.54 Intersection Signal Delay: 20.7 Intersection Capacity Utilization 56.1%

Intersection LOS: C ICU Level of Service B

Analysis Period (min) 15

Lanes, Volumes, Timings 7: Prospect Avenue & Park Road

Arcadia Crossing, Park at Prospect, West Hartford Existing Weekday AM Peak

Splits and Phases:	7: Prospect Avenue & Park Roa	d		
47.	(a)	AR ₀₃	₹ ø7	¥ ø8
126	23 6 1	245	95	27-5

Exhibit 17
Traffic Operations Analysis Worksheets
Existing 2014 PM Peak

Intersection		120000	nessidai e		No.			
Int Delay, s/veh	2.2							
Movement	EBL	EBT	RESIDENCE OF	WBT	WBR	SBL	SBR	
Vol, veh/h	42	261		377	24	34	62	
Conflicting Peds, #/hr	0	0		0	0	0	0	
Sign Control	Free	Free		Free	Free	Stop	Stop	
RT Channelized	-	None		-	None	-	None	
Storage Length	-			-	-	0		
Veh in Median Storage, #	‡ -	0		0	-	0	-	
Grade, %	-	0		0	-	0	-	
Peak Hour Factor	99	99		95	95	90	90	
Heavy Vehicles, %	2	2		2	2	2	2	
Mvmt Flow	42	264		397	25	38	69	
Major/Minor	Major1			Major2		Minor2		
Conflicting Flow All	422	0		-	0	757	409	
Stage 1		-		-	-	409	-	
Stage 2	17			-	-	348	-	
Critical Hdwy	4.12	-		2	-	6.42	6.22	
Critical Hdwy Stg 1		-		-	-	5.42	-	
Critical Hdwy Stg 2		-		-	-	5.42	(4)	
Follow-up Hdwy	2.218	-		-	-	3.518	3.318	
Pot Cap-1 Maneuver	1137			-	-	375	642	
Stage 1		-		-	-	671	-	
Stage 2				-		715	-	
Platoon blocked, %		-		-	-			
Mov Cap-1 Maneuver	1137	-		-	-	359	642	
Mov Cap-2 Maneuver	-	-		-	-	359		
Stage 1		-		-	- 10	671	-	
Stage 2		-		-	-	684	E De	
Approach	EB	5000	THE STATE OF	WB		SB	OUT WITH SEA	
HCM Control Delay, s	1.1			1 (14)		14.1		
HCM LOS	1.1					В		
HOW LOS						_		
Minor Lane/Major Mvmt	EBL	EBT	WBT WBR S	SBLn1	elorge	0.81448.00		
Capacity (veh/h)	1137	-		502				
HCM Lane V/C Ratio	0.037	-		0.212				
HCM Control Delay (s)	8.3	0		14.1				
HCM Lane LOS	А	A		В				
HCM 95th %tile Q(veh)	0	_		1				

Intersection			7/4					
nt Delay, s/veh	0.5							
		FOT	EBR	WB	L WBT	NBL	NBR	54970 St (W)
Movement	1-27-5	EBT	6	1		2	11	
Vol, veh/h		286	0		0 0	0	0	
Conflicting Peds, #/hr		_ 0					Stop	
Sign Control		Free	Free	Fre		Stop	None	
RT Channelized		-	None		- None	-	None	
Storage Length			*		- 0	0	-	
Veh in Median Storage, #		0	-		- 0	0	-	
Grade, %		0	-		- 0	0	61	
Peak Hour Factor		99	99		5 95	61		
Heavy Vehicles, %		2	2		2 2	2 3	2 18	
Mvmt Flow		289	6	2	0 420	3	10	
Major/Minor	h	Najor1	0000	Major	2	Minor1		SECURIOR SE
Major/Minor	, and the second	0	0	29		752	292	
Conflicting Flow All		U	U	23	2 0	292	202	
Stage 1			- 10		2 2	460	_	
Stage 2				4.1	2	6.42	6.22	
Critical Hdwy		-		4.1		5.42	U-ALA	
Critical Hdwy Stg 1		- 10			- 2	5.42		
Critical Hdwy Stg 2		1.5		2.21	ο 😕	3.518	3.318	
Follow-up Hdwy		-	-	126		378	747	
Pot Cap-1 Maneuver		-	919	120	=======================================	758		
Stage 1						636		
Stage 2					- 27	030		
Platoon blocked, %		-		126	6	370	747	
Mov Cap-1 Maneuver		-	-	120		370	1-1	
Mov Cap-2 Maneuver		-				758		
Stage 1			-			623	_	
Stage 2			-			023		
Approach	CHIENCE	EB	STATE	W	В	NB	NEW YORK HIS	
HCM Control Delay, s				0		10.8		
HCM LOS						В		
TOW LOO								
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL WB	T		St. 10 E	Toxica of a
Capacity (veh/h)	646	-	-	1266	-			
HCM Lane V/C Ratio	0.033		-	0.016				
HCM Control Delay (s)	10.8	-	-	7.9	0			
HCM Lane LOS	В			Α	A			
HCM 95th %tile Q(veh)	0			0	-			

Intersection	neysad		8118	A-10/25			COUNTY 2	
	0.3							
Movement	SECTION AND A	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h		297	7	10	431	6	4	
Conflicting Peds, #/hr		0	0	0	0	0	0	
Sign Control		Free	Free	Free	Free	Stop	Stop	
RT Channelized		-	None	-	None	-	None	
Storage Length		-	-	0	-	0		
Veh in Median Storage, #		0	-	-	0	0	-	
Grade, %		0	_		0	0	-	
Peak Hour Factor		99	100	100	99	92	92	
Heavy Vehicles, %		2	2	2	2	2	2	
Mvmt Flow		300	7	10	435	7	4	
Date of the Control o		10000	PANEL IN	(Addison		Minor1	es 'sell trus	
Major/Minor	lv.	Major1	_	Major2	0	759	304	
Conflicting Flow All		0	0	307	0	304	304	
Stage 1			-	97	্ কু			
Stage 2		::3	*	4.40		455		
Critical Hdwy		•	*	4.12		6.42	6.22	
Critical Hdwy Stg 1		-	*		3 .	5.42		
Critical Hdwy Stg 2		-		-		5.42	0.040	
Follow-up Hdwy				2.218		3.518	3.318	
Pot Cap-1 Maneuver		-		1254		374	736	
Stage 1			-			748	7.00	
Stage 2			-			639	-	
Platoon blocked, %		3.7	-		-	070	700	
Mov Cap-1 Maneuver				1254		370	736	
Mov Cap-2 Maneuver		-		-		370	-	
Stage 1		-	-	-		748	-	
Stage 2				-		632	-	
Approach	355,60000	EB	618.38	WB	ate by	NB	STORES IN	(Aulgor) Sing(V)
HCM Control Delay, s		Sinus Soul	TE CONTRACTOR	0.2		13		
HCM LOS				0.2		В		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL WBT	alt sa	MANAGEMENT OF THE PARTY OF THE		
Capacity (veh/h)	462		-	1254	9			
HCM Lane V/C Ratio	0.024		· -	0.008				
HCM Control Delay (s)	13		-	7.9 0				
HCM Lane LOS	В		-	A A				
HCM 95th %tile Q(veh)	0	0.00	94	0 =				
HOIVI JOHN JOHNE GE(VOII)	3			- 195				

	A	>	7	1	4	*	4	1	1	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414	7	ሻ	1,			47			4%	
Volume (vph)	47	156	85	166	307	80	75	436	92	43	393	49
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		75	0		0	0		0	0		0
Storage Lanes	1		_ 1	1		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		1.00		0.98				1.00			1.00	
Frt			0.850		0.969			0.977			0.985	
Flt Protected		0.988		0.950				0.994			0.996	
Satd. Flow (prot)	0	3497	1583	1770	1805	0	0	3437	0	0	3472	0
Flt Permitted	_	0.778		0.950				0.843			0.828	
Satd. Flow (perm)	0	2747	1583	1734	1805	0	0	2912	0	0	2885	0
Right Turn on Red	•		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			133		16			23			12	
Link Speed (mph)		30	100		30			30			30	
Link Distance (ft)		615			300			400			300	
Travel Time (s)		14.0			6.8			9.1			6.8	
Confl. Peds. (#/hr)	10	14.0		10	0.0		10			10		
Peak Hour Factor	0.93	0.93	0.93	0.99	0.99	0.99	0.89	0.89	0.89	0.96	0.96	0.96
Adj. Flow (vph)	51	168	91	168	310	81	84	490	103	45	409	51
Shared Lane Traffic (%)	31	100	31	100	010	01				,-		
Lane Group Flow (vph)	0	219	91	168	391	0	0	677	0	0	505	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Lane Alignment	Len	0	ragnt	Leit	12	ragin	Lon	0	, agair		0	
Median Width(ft)		0			0			Ö			0	
Link Offset(ft)		16			16			16			16	
Crosswalk Width(ft) Two way Left Turn Lane		10			10							
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	9	15	1.00	9	15	1100	9
Turning Speed (mph)	13	2	1	1	2	9	1	2	Ů	1	2	
Number of Detectors	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Detector Template	20	100	20	20	100		20	100		20	100	
Leading Detector (ft)	0	0	0	0	0		0	0		0	0	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Size(ft)		Cl+Ex	CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Type	CI+Ex	CITEX	CITEX	CITEX	CITEX		OILLA	OI. LX		OI. LX	OI LA	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0					0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0 94		0.0	94		0.0	94	
Detector 2 Position(ft)		94						6			6	
Detector 2 Size(ft)		6			6						Cl+Ex	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			OFEX	
Detector 2 Channel					0.0			0.0			0.0	
Detector 2 Extend (s)	_	0.0		6 "	0.0		0-13	0.0		Doses		
Turn Type	Perm	NA	Perm	Split	NA		Split	NA		Perm	NA	
Protected Phases		2		1	1		7	7			8	

Arcadia Crossing, Park at Prospect, West Hartford 9/30/2015 Existing Weekday PM Peak Bubaris Traffic Associates

	*	>	*	1	-	1	4	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2		2			8		8	8	
Detector Phase	2	2	2	1	1		7	7		8	8	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	6.0	6.0		3.0	3.0		12.0	12.0	
Minimum Split (s)	18.0	18.0	18.0	9.0	9.0		6.0	6.0		18.0	18.0	
Total Split (s)	21.0	21.0	21.0	13.0	13.0		8.0	8.0		24.0	24.0	
Total Split (%)	23.3%	23.3%	23.3%	14.4%	14.4%		8.9%	8.9%		26.7%	26.7%	
Maximum Green (s)	15.0	15.0	15.0	10.0	10.0		5.0	5.0		18.0	18.0	
Yellow Time (s)	4.0	4.0	4.0	3.0	3.0		3.0	3.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	0.0	0.0		0.0	0.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)		6.0	6.0	3.0	3.0			3.0			6.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?										Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	None	None		None	None		Min	Min	
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)											40.4	
Act Effct Green (s)		12.7	12.7	10.2	29.0			26.5			18.4	
Actuated g/C Ratio		0.19	0.19	0.15	0.42			0.39			0.27	
v/c Ratio		0.43	0.23	0.64	0.50			0.57			0.64	
Control Delay		29.2	3.8	42.9	18.3			18.6			28.3	
Queue Delay		0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay		29.2	3.8	42.9	18.3			18.6			28.3	
LOS		С	Α	D	В			В			C	
Approach Delay		21.8			25.7			18.6			28.3	
Approach LOS		C			C			В			C 84	
Queue Length 50th (ft)		38	0	61	96			83				
Queue Length 95th (ft)		96	19	#209	272			218			#231	
Internal Link Dist (ft)		535			220			320			220	
Turn Bay Length (ft)			75					4400			700	
Base Capacity (vph)		615	457	263	775			1182			783	
Starvation Cap Reductn		0	0	0	0			0			0	
Spillback Cap Reductn		0	0	0	0			0			0	
Storage Cap Reductn		0	0	0	0			0			0	
Reduced v/c Ratio		0.36	0.20	0.64	0.50			0.57			0.64	

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 68.4

Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.64 Intersection Signal Delay: 23.4 Intersection Capacity Utilization 78.5%

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Arcadia Crossing, Park at Prospect, West Hartford Existing Weekday PM Peak

Lanes, Volumes, Timings 7: Prospect Avenue & Park Road

Queue shown is maximum after two cycles.

Splits and Phases:	7: Prospect Av	enue & Park Road			
* 01	→ 32	A\$ 03	1 07	▼ 08	
17 e	215	245	3 5	24 s	

Exhibit 18
Traffic Operations Analysis Worksheets
Background 2017 AM Peak

Intersection	Market Shift	no de misso	10000	STEEN SE	Carro Serie		NAME OF TAXABLE PARTY.		diseason.		18 58	DAY S
Int Delay, s/veh	1.8											
III Delay, Siveri	1.0											
Movement	EBL	EBT	10000	COST	WBT	r V	VBR	SBL	SBF		OU SE	
Vol, veh/h	36	425			156		7	43	25			
Conflicting Peds, #/hr	0	0			(0	0	()		
Sign Control	Free	Free			Free	e F	ree	Stop	Stop)		
RT Channelized	- 1100	None					lone	-	None)		
Storage Length	1041	-			9		-	0		8		
/eh in Median Storage, #	E _	0			()	-	0		-		
Grade, %	_	0			()	12	0		-		
Peak Hour Factor	99	99			98	5	95	90	90)		
leavy Vehicles, %	2	2				2	2	2	1	2		
Nymt Flow	36	429			164		7	48	28	3		
MAIIII LIOM	00	720										
Major/Minor	Major1	206	SESHS	Q.S.Ma	Major	2	Maki	Minor2	araxe se	Carlo S	E.0%	
Conflicting Flow All	172	0				-	0	670	16	3		
Stage 1	1.0	+				-		168		-		
Stage 2		-				-	-	502		-		
Critical Hdwy	4.12	-					-	6.42	6.2	2		
Critical Hdwy Stg 1						-	_	5.42		2		
Critical Hdwy Stg 2		-				*)		5.42		-		
Follow-up Hdwy	2.218					*)	2	3.518	3.31	8		
Pot Cap-1 Maneuver	1405	-				-	21	422	87	6		
Stage 1	1100	-					23	862		2		
Stage 2	-						-	608				
Platoon blocked, %							23					
Mov Cap-1 Maneuver	1405						23	408	87	6		
Mov Cap-1 Maneuver	1700						_	408		-		
		- 10					_	862		2		
Stage 1							2	587		-		
Stage 2												
Approach	EB	0.50500	SUST	SUSSE	W	В		SB	SERVE		Section	12/15/10
HCM Control Delay, s	0.6					0		13.3				
HCM LOS	0.0							В				
I IONI LOG												
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR S	BLn1	2412		Supposed S	BE BY COL	THE R		8078
Capacity (veh/h)	1405		_	-	508							
HCM Lane V/C Ratio	0.026		+1	- {	0.149							
HCM Control Delay (s)	7.6			_	13.3							
HCM Lane LOS	7.0 A		99	_	В							
	0.1	_	60	_	0.5							
HCM 95th %tile Q(veh)	0,1				•							
M ADITI WRIE (C(AGII)	0, 1	_	5.5		0.0							

Intersection		Scient Scient	1000					
Int Delay, s/veh	0.8							
Movement	STORES FOR	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h		461	7	13	158	5	18	
Conflicting Peds, #/hr		0	0	0	0	0	0	
Sign Control	I	Free	Free	Free	Free	Stop	Stop	
RT Channelized		-	None	-	None	**	None	
Storage Length		**	-	-		0	-	
Veh in Median Storage, #	<u> </u>	0	-	-	0	0	-	
Grade, %		0	-	-	0	0	-	
Peak Hour Factor		99	99	95	95	61	61	
Heavy Vehicles, %		2	2	2	2	2	2	
Mymt Flow		466	7	14	166	8	30	
Major/Minor	Ma	ajor1		Major2		Minor1		
Conflicting Flow All		0	0	473	0	663	469	
Stage 1		37	-	ē	1.0	469	-	
Stage 2		*		8	-	194	0.00	
Critical Hdwy		1	-	4.12	-	6.42	6.22	
Critical Hdwy Stg 1		-	0.00		~	5.42	-	
Critical Hdwy Stg 2				*	-	5.42	0.010	
Follow-up Hdwy		100		2.218	-	3.518	3.318	
Pot Cap-1 Maneuver				1089	-	426	594	
Stage 1			-	-	-	630	-	
Stage 2			97		-	839		
Platoon blocked, %		1.0	-			400	504	
Mov Cap-1 Maneuver		-		1089		420	594	
Mov Cap-2 Maneuver		- 7		-		420		
Stage 1		85		-		630		
Stage 2		3.5				827	-	
		P. C.		N.m.	1000	NB	DISCOURSE OF	W.C. W
Approach		EB		WB				
HCM Control Delay, s		0		0.6		12.1 B		
HCM LOS						Ь		
htt b Milaina hitamah	NBLn1	EBT	EBR	WBL WBT		VILLES IN STAR	est and Experience	
Minor Lane/Major Mvmt		CDI	LOIN	1089 -				
Capacity (veh/h)	545	-	-	0.010				
HCM Lane V/C Ratio	0.069	35	-					
HCM Control Delay (s)	12.1	-	-	8.3 0				
HCM Lane LOS	В	-	-	A A				
HCM 95th %tile Q(veh)	0.2	-	*	0 -				

0.3						
EBT	EBR	WBL	WBT	NBL	NBR	
479	4	1	187	5		
0	0	0	0	0		
Free	Free	Free	Free	Stop		
-	None	-	None	-	None	
-	0.00	0	-		2.0	
0		es.	0		25.0	
0		-	0		-	
99	100	100				
2	2	2				
484	4	1	189	5	13	
Mojert		Major?	DESIGNATION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN	Minor1		
	0		0		486	
U	U	400				
-						
-					0.22	
-	-					
_		2 218			3 318	
		1075			-	
	-					
-				0.11		
		1075		418	581	
		1070				
	-			840	-	
EB						
0		0				
				В		
NBLn1 FBT	EBR	WBL WBT				
		A A				
В -	-	A A				
	EBT 479 0 Free - 0 0 99 2 484 Major1 0	EBT EBR 479	EBT EBR WBL	EBT EBR WBL WBT	EBT EBR WBL WBT NBL	BBT EBR WBL WBT NBL NBR

	٨		_		+	4	- 4.	†	<i>▶</i>	_		1
			*	#			7				Tarasta in	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44	7	7	1			473			413	
Volume (vph)	76	252	138	81	110	73	49	279	39	33	298	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		75	0		0	0		0	0		0
Storage Lanes	1		1	1		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		1.00		0.98				1.00			1.00	
Frt			0.850		0.940			0.984			0.988	
Flt Protected		0.989		0.950				0.993			0.995	
Satd. Flow (prot)	0	3500	1583	1770	1751	0	0	3458	0	0	3479	0
Flt Permitted		0.831		0.950				0.887			0.870	
Satd. Flow (perm)	0	2933	1583	1737	1751	0	0	3084	0	0	3040	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			148		41			14			8	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		615			300			400			300	
Travel Time (s)		14.0			6.8			9.1			6.8	
Confl. Peds. (#/hr)	10			10			10			10		
Peak Hour Factor	0.93	0.93	0.93	0.99	0.99	0.99	0.89	0.89	0.89	0.96	0.96	0.96
Adj. Flow (vph)	82	271	148	82	111	74	55	313	44	34	310	29
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	353	148	82	185	0	0	412	0	0	373	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Rìght	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			12	_		0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	2.2	94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		01. LA			. L.							
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Split	NA		Split	NA		Perm	NA	
Protected Phases	CITI	2	1 01111	1	1		7	7		, 31111	8	
1 TOTECTED 1 HIGSES							,	,				

Arcadia Crossing, Park at Prospect, West Hartford 9/30/2015 Background Weekday AM Peak Bubaris Traffic Associates

	۶	->	7	1	←	4	1	Ť	1	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2		2			8		8	8	
Detector Phase	2	2	2	1	1		7	7		8	8	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	6.0	6.0		3.0	3.0		12.0	12.0	
Minimum Split (s)	18.0	18.0	18.0	9.0	9.0		6.0	6.0		18.0	18.0	
Total Split (s)	23.0	23.0	23.0	12.0	12.0		9.0	9.0		22.0	22.0	
Total Split (%)	25.6%	25.6%	25.6%	13.3%	13.3%		10.0%	10.0%		24.4%	24.4%	
Maximum Green (s)	17.0	17.0	17.0	9.0	9.0		6.0	6.0		16.0	16.0	
Yellow Time (s)	4.0	4.0	4.0	3.0	3.0		3.0	3.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	0.0	0.0		0.0	0.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)		6.0	6.0	3.0	3.0			3.0			6.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?										Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	None	None		None	None		Min	Min	
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		14.1	14.1	8.2	28.5			22.9			13.6	
Actuated g/C Ratio		0.22	0.22	0.13	0.44			0.36			0.21	
v/c Ratio		0.55	0.32	0.36	0.23			0.36			0.57	
Control Delay		27.7	7.5	34.1	11.3			16.0			28.1	
Queue Delay		0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay		27.7	7.5	34.1	11.3			16.0			28.1	
LOS		С	Α	C	В			В			C	
Approach Delay		21.7			18.3			16.0			28.1	
Approach LOS		С			В			В			C	
Queue Length 50th (ft)		57	0	26	27			46			61	
Queue Length 95th (ft)		145	50	90	108			131			152	
Internal Link Dist (ft)		535			220			320			220	
Tum Bay Length (ft)			75					4440			704	
Base Capacity (vph)		805	542	257	776			1146			791	
Starvation Cap Reductn		0	0	0	0			0			0	
Spillback Cap Reductn		0	0	0	0			0			0	
Storage Cap Reductn		0	0	0	0			0			0 47	
Reduced v/c Ratio		0.44	0.27	0.32	0.24			0.36			0.47	

Intersection Summary

Area Type:

Cycle Length: 90

Actuated Cycle Length: 64.1

Natural Cycle: 75

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.57

Intersection Signal Delay: 21.1

Other

Intersection Capacity Utilization 57.4%

Analysis Period (min) 15

Intersection LOS: C ICU Level of Service B Lanes, Volumes, Timings 7: Prospect Avenue & Park Road Arcadia Crossing, Park at Prospect, West Hartford
Background Weekday AM Peak

Solits and Phases:	7: Prospect Avenue & Park Roa	d		
7 ₀₁	→ 62	ÁÅg3	▼ ø7	▼ g3
12 \$	23's	245	9 s	22 s

Exhibit 19
Traffic Operations Analysis Worksheets
Background 2017 PM Peak

Intersection	ESTELLES.	到北泛					1200	Edition.	M202	15814	33	A CHILD	STANK.	1983
Int Delay, s/veh	2.3				4									
Movement	EBL	EBT		/REE		WBT	WBR	E4.Th	SBL	5	BBR	NO SHITTE		Tito di
Vol, veh/h	45	273				400	25		36		66			
Conflicting Peds, #/hr	0	0				0	0		0		0			
Sign Control	Free	Free				Free	Free	5	Stop	5	Stop			
RT Channelized	-	None				-	None		-	N	one			
Storage Length	0						-		0					
Veh in Median Storage, #	÷.	0				0	-		0		-			
Grade, %	-	0				0	-		0		-			
Peak Hour Factor	99	99				95	95		90		90			
Heavy Vehicles, %	2	2				2	2		2		2			
Mvmt Flow	45	276				421	26		40		73			
Major/Minor	Major1	50	0189	3535	1	Major2	W.50	Mir	nor2	105930		1000000	1/63	1000
Conflicting Flow All	447	0				-	0		801		434			
Stage 1	2						_		434					
Stage 2						_	1		367					
Critical Hdwy	4.12	ু					9		6.42	6	3.22			
Critical Hdwy Stg 1	£	-				_	12		5.42		_			
Critical Hdwy Stg 2		-				-	1		5.42		_			
Follow-up Hdwy	2.218	2				-			.518	3.	318			
Pot Cap-1 Maneuver	1113	2					_		354		622			
Stage 1		ु				100			653		_			
Stage 2	23					-			701		-			
Platoon blocked, %		- 2					_							
Mov Cap-1 Maneuver	1113	8				_	_		337		622			
Mov Cap-1 Maneuver	1110	- 12					-		337					
Stage 1	20								653		12			
Stage 2						0.20	- 0		667		12			
Slaye 2	-	-							007		1.5			
Approach	EB	STATE OF	0.000	55-55		WB	miez	SECTION .	SB	(5715)			500	NAME OF TAXABLE
HCM Control Delay, s	1.2					0		1	14.8					
HCM LOS	1.2					U		1	B					
TION LOG									5					
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR S	SBI n1		1	E LE VEN				None and		
Capacity (veh/h)	1113	-	1101		479									
HCM Lane V/C Ratio	0.041	Į.	000	_	0.237									
	8.4	0	50%	_	14.8									
HCM Long LOS				_										
HCM Lane LOS	A	Α	-	-	B 0.9									
HCM 95th %tile Q(veh)	0.1	-	-	-	0.9									

Intersection		210			Z SX			
int Delay, s/veh	0.5							
N.	distribution of the	FOT	EDD	WBL	MOT	NBL	NBR	
Movement	12010	303	EBR 6	20		2	12	
Vol, veh/h		0	0	2(0	0	
Conflicting Peds, #/hr		Free	Free	Free		Stop	Stop	
Sign Control RT Channelized		riee	None	FICE.		οιορ	None	
Storage Length		- 52	None	85	- MOHE	0	None	
Storage Length Veh in Median Storage, #		0			. 0	0		
ven in Median Storage, # Grade, %		0	_			0		
Peak Hour Factor		99	99	95		61	61	
Heavy Vehicles, %		2	2	2		2	2	
Mvmt Flow		306	6	21		3	20	
WINHIL CIOW		200	υ	۷۱	440	3	20	
Major/Minor		Unior1	2500400	Major2		Minor1	MAN CONTRACTOR	
Major/Minor Conflicting Flow All	P	Major1 0	0	312		796	309	
•		U	U	312	. 0	309	JU5	
Stage 1			_	-		487		
Stage 2		-	-	4.12		6.42	6.22	
Critical Hdwy		=5	1/23	47.12		5.42	0.22	
Critical Hdwy Stg 1						5.42	-	
Critical Hdwy Stg 2 Follow-up Hdwy		9	165	2.218		3.518	3.318	
Pot Cap-1 Maneuver		15		1248		356	731	
-		- 0	520	1240	7720	745	701	
Stage 1 Stage 2		- 0			722	618	74	
Platoon blocked, %		- 2	1023		020	010		
Mov Cap-1 Maneuver			7723	1248	028	348	731	
Mov Cap-1 Maneuver		- 0	772	1240	0.24	348	701	
Stage 1						745		
		- 33	1000			604		
Stage 2		-			_	004		
Approach	L TOTAL SECTION	EB		WB	1000	NB		ROBER SET VIN
HCM Control Delay, s		0		0.4		10.9		
HCM LOS						В		
Winor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL WBT				
Capacity (veh/h)	632		-	1248 -				
HCM Lane V/C Ratio	0.036	- 0		0.017 -				
HCM Control Delay (s)	10.9	- 8	_	7.9 0				
HCM Lane LOS	В		_	A A				
HCM 95th %tile Q(veh)	0.1	2	-	0.1				
Tom boar hallo of ton)	Ų. I			•••				

Intersection	9915161		Lines:	A THE SHALL				
Int Delay, s/veh	0.3							
Movement		EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h		315	7	10	457	6	4	
Conflicting Peds, #/hr		0	0	0	0	0	0	
Sign Control		Free	Free	Free	Free	Stop	Stop	
RT Channelized		-	None	-	None	~	None	
Storage Length			-	0	-	0	23	
Veh in Median Storage, #		0	2		0	0	-	
Grade, %		0	2		0	0	-	
Peak Hour Factor		99	100	100	99	92	92	
Heavy Vehicles, %		2	2	2	2	2	2	
Mvmt Flow		318	7	10	462	7	4	
Major/Minor	The sale	Major1	SALE	Мајог2	THE ST	Minor1	AL ZOVE	
Conflicting Flow All		0	0	325	0	804	322	
Stage 1				-	-	322	1	
Stage 2		40	-		-	482		
Critical Hdwy		-		4.12	-	6.42	6.22	
Critical Hdwy Stg 1		-	*	7 e	-	5.42		
Critical Hdwy Stg 2				7.0		5.42		
Follow-up Hdwy			\$	2.218	-	3.518	3.318	
Pot Cap-1 Maneuver			+	1235	-	352	719	
Stage 1			+	640	-	735	540	
Stage 2		-	_			621	-	
Platoon blocked, %			+		-			
Mov Cap-1 Maneuver		*	+3	1235	*3	348	719	
Mov Cap-2 Maneuver		194	-		*	348	(4)	
Stage 1		-	-	-	7.5	735	(*)	
Stage 2		-	-	-	**	614	(4)	
Approach	h bry d	EB	530	WB	THE L	NB		
HCM Control Delay, s		0		0.2		13.4		
HCM LOS						В		
Art of the same of	A IDI	For	ECD	MOI MOT	COLUMN TOWNS OF	T-3845	none and a	DESCRIPTION DESCRIPTION
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL WBT	06/123		all the	
Capacity (veh/h)	439	-	-	1235				
HCM Lane V/C Ratio	0.025	-	-	0.008				
HCM Control Delay (s)	13.4	-	-	7.9 0				
HCM Lane LOS	В	*		A A				
HCM 95th %tile Q(veh)	0.1	-		0 -				

7.110000017110110	۶		7	1	4	4	4	†	1	1	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		41>	7	7	ĵ.			नी			नी	
Volume (vph)	50	165	90	176	325	85	80	462	98	46	417	52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		75	0		0	0		0	0		0
Storage Lanes	1		1	1		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		1.00		0.98				1.00			1.00	
Frt			0.850		0.969			0.977			0.985	
Flt Protected		0.988		0.950				0.994			0.996	
Satd. Flow (prot)	0	3497	1583	1770	1805	0	0	3437	0	0	3472	0
Flt Permitted		0.771		0.950				0.828			0.817	
Satd. Flow (perm)	0	2723	1583	1735	1805	0	0	2860	0	0	2847	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			133		16			23			12	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		615			300			400			300	
Travel Time (s)		14.0			6.8			9.1			6.8	
Confl. Peds. (#/hr)	10			10			10			10		
Peak Hour Factor	0.93	0.93	0.93	0.99	0.99	0.99	0.89	0.89	0.89	0.96	0.96	0.96
Adj. Flow (vph)	54	177	97	178	328	86	90	519	110	48	434	54
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	231	97	178	414	0	0	719	0	0	536	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	0		12	Ü		0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	5.5	94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		O: 12/			- L							
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Split	NA		Split	NA		Perm	NA	
Protected Phases	CIIII	2	1 CIIII	3piit	1		7	7		1 01111	8	
1 IVICUICU FIIASCS		2			1		- 1	,			U	

Arcadia Crossing, Park at Prospect, West Hartford 9/30/2015 Background Weekday PM Peak Bubaris Traffic Associates

	۶	→	*	1	4-	4	1	†	-	1	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2		2			8		8	8	
Detector Phase	2	2	2	1	1		7	7		8	8	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	6.0	6.0		3.0	3.0		12.0	12.0	
Minimum Split (s)	18.0	18.0	18.0	9.0	9.0		6.0	6.0		18.0	18.0	
Total Split (s)	21.0	21.0	21.0	13.0	13.0		8.0	8.0		24.0	24.0	
Total Split (%)	23.3%	23.3%	23.3%	14.4%	14.4%		8.9%	8.9%		26.7%	26.7%	
Maximum Green (s)	15.0	15.0	15.0	10.0	10.0		5.0	5.0		18.0	18.0	
Yellow Time (s)	4.0	4.0	4.0	3.0	3.0		3.0	3.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	0.0	0.0		0.0	0.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)		6.0	6.0	3.0	3.0			3.0			6.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?										Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	None	None		None	None		Min	Min	
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		12.8	12.8	10.2	29.1			26.5			18.4	
Actuated g/C Ratio		0.19	0.19	0.15	0.42			0.39			0.27	
v/c Ratio		0.45	0.24	0.68	0.53			0.62			0.69	
Control Delay		29.6	4.6	45.1	18.9			19.7			30.0	
Queue Delay		0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay		29.6	4.6	45.1	18.9			19.7			30.0	
LOS		С	Α	D	В			В			С	
Approach Delay		22.2			26.7			19.7			30.0	
Approach LOS		С			С			В			С	
Queue Length 50th (ft)		41	0	65	103			89			91	
Queue Length 95th (ft)		101	23	#223	292			#239			#256	
Internal Link Dist (ft)		535			220			320			220	
Turn Bay Length (ft)		000	75	200								
Base Capacity (vph)		608	457	263	776			1164			772	
Starvation Cap Reductn		0	0	0	0			0			0	
Spillback Cap Reductn		0	0	0	0			0			0	
Storage Cap Reductn		0	0	0	0			0			0	
Reduced v/c Ratio		0.38	0.21	0.68	0.53			0.62			0.69	

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 68.5

Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.69 Intersection Signal Delay: 24.5 Intersection Capacity Utilization 81.7%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Lanes, Volumes, Timings 7: Prospect Avenue & Park Road

Arcadia Crossing, Park at Prospect, West Hartford
Background Weekday PM Peak

Queue shown is maximum after two cycles.

Spirts and Phases:	7: Prospect Avenue & Park Re	pad	1 4	
47		\$ \$ day	1 97	√ 98
▼ 51	21 s	24 s	35	24 s

	Þ	>	*	1	4	*	1	†	1	1	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	n	4	71	7	10			ની કિ			413	
Volume (vph)	92	122	109	57	277	113	201	517	92	95	478	242
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt			0.850		0.956			0.983			0.956	
Flt Protected	0.950			0.950				0.988			0.994	
Satd. Flow (prot)	1770	1863	1583	1770	1781	0	0	3437	0	0	3363	0
Flt Permitted	0.950			0.679				0.536			0.683	
Satd. Flow (perm)	1770	1863	1583	1265	1781	0	0	1865	0	0	2311	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			119		16			16			58	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		580			300			438			1290	
Travel Time (s)		13.2			6.8			10.0			29.3	
Peak Hour Factor	1.00	1.00	1.00	0.73	0.73	0.73	0.84	0.84	0.84	0.99	0.99	0.99
Adj. Flow (vph)	92	122	109	78	379	155	239	615	110	96	483	244
Shared Lane Traffic (%)	02	,										
Lane Group Flow (vph)	92	122	109	78	534	0	0	964	0	0	823	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)	2011	12			12			0	Ü		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	· -/-											
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Split	NA	Perm	Perm	NA		Split	NA		Perm	NA	
Protected Phases	3	3			4		1	1			2	
Permitted Phases	J	4	3	4	4			2		2		
Detector Phase	3	3	3	4	4		1	1		2	2	
Switch Phase		Ü										
Minimum Initial (s)	5.0	5.0	5.0	10.0	10.0		5.0	5.0		15.0	15.0	
Minimum Split (s)	9.0	9.0	9.0	16.0	16.0		9.0	9.0		22.0	22.0	

Arcadia Crossing, Park at Prospect, West Hartford 9/30/2015 Background Weekday PM Peak Bubaris Traffic Associates

Exhibit 20
Traffic Operations Analysis Worksheets
Combined 2017 AM Peak

			C-1-1	+0.7							
Intersection		SEIM	2116	HATE		(ge	Etc.	YSSE	EG		4
Int Delay, s/veh	1.8										
•											
Movement	EBL	EBT	3050	993U		NBT	WBR	S	BL	SBR	40.5
Vol, veh/h	36	431				181	8		43	25	
Conflicting Peds, #/hr	0	0				0	0		0	0	
Sign Control	Free	Free			1	Free	Free	St	ор	Stop	
RT Channelized	-	None				_	None		-	None	
Storage Length	_	_				2			0	-	
Veh in Median Storage,	# -	0				0			0	-	
Grade, %	-	0				0	-		0	-	
Peak Hour Factor	99	99				95	95		90	90	
Heavy Vehicles, %	2	2				2	2		2	2	
Mymt Flow	36	435				191	8		48	28	
THE STREET LINES.	_ -										
Major/Minor	Major1	ed and	SELECT.	CO. B.	Ma	ajor2	Laber 1	Mino	or2	THE PERSON	AL S
Conflicting Flow All	199	0				-	0		03	195	
Stage 1	190) A -	1	95	-	
Stage 2		-					3	5	808	32	
Critical Hdwy	4.12						-	6	.42	6.22	
Critical Hdwy Stg 1	*: 12	-						5	.42	S#	
Critical Hdwy Stg 2	-					-	i -	5	.42		
Follow-up Hdwy	2.218	-				-		3.5	518	3.318	
Pot Cap-1 Maneuver	1373	-				12		4	104	846	
Stage 1	1070							8	338	-	
Stage 2	-	-				12	9	- {	604	-	
Platoon blocked, %						1	-				
Mov Cap-1 Maneuver	1373						- 1	3	390	846	
Mov Cap-1 Maneuver	-	1.0					- 1		390	-	
Stage 1	_						-	8	338		
Stage 2						-			583		
Olugo 2											
Approach	EB		CHOOS	Eggi	9311	WB	PARTIE.		SB		
Approach HCM Control Delay, s	0.6					0		1	3.8		
HCM LOS	0.0					_			В		
HOW LOS											
Mineral and Marian Marian	EBL	EBT	WBT	WBR S	Bl n1				00 til 10	State and	
Minor Lane/Major Mymt			(AD)	TOILO	486						
Capacity (veh/h)	1373		_	- (0.155						
HCM Lane V/C Ratio	0.026			- '	13.8						
HCM Control Delay (s)	7.7		53	_	13.0 B						
HCM Lane LOS	A			-	0.5						
HCM 95th %tile Q(veh)	0.1			-	0.0						

Intersection	5.00		SECTION AND ADDRESS OF THE PARTY.		COLUMN TO SERVICE			
	0.8							
novement	CHICKSON	EBT	EBR	WBL	WBT	NBL	NBR	
		467	7	13		5	18	
/ol, veh/h		0	Ó	0		0	0	
Conflicting Peds, #/hr		Free	Free	Free		Stop	Stop	
Sign Control RT Channelized		1166	None	-			None	
		2	NONC		110110	0	-	
Storage Length		0			. 0	0	_	
/eh in Median Storage,#	•	0	-			0	_	
Grade, %		99	99	95		61	61	
Peak Hour Factor		2	2	2		2	2	
leavy Vehicles, %		472	7	14		8	30	
Nymt Flow		412	,	,,	101			
Major/Minor	1	Иајог1	2000	Major2		Minor1	Serial A	SALES VIETNAMES A
Conflicting Flow All	-	0	0	479) 0	693	475	
Stage 1		-				475	-	
Stage 2		-				218	-	
Critical Hdwy				4.12	2	6.42	6.22	590
Critical Hdwy Stg 1						5.42	2.4	
Critical Hdwy Stg 2		-	-			5.42	39	
Follow-up Hdwy				2.218	3	3.518	3.318	
Pot Cap-1 Maneuver			-	1083	3	409	590	
Stage 1		-	_			626		
Stage 2		- 0				818	-	
Platoon blocked, %					-			
Mov Cap-1 Maneuver			-	1083	3	403	590	
Mov Cap-2 Maneuver		-	_			403		
Stage 1		- 1	_			626	-	
Stage 2		-	72			807	(*)	
				120		ND.		enen o consulta distilla
Approach		EB	1	WE		NB	Vanda (400)	
HCM Control Delay, s		0		0.0	5	12.2		
HCM LOS						В		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL WB	r new		SITTLE	
Capacity (veh/h)	536				_			
HCM Lane V/C Ratio	0.07				_			
	12.2	15	S -		0			
HCM Control Delay (s)	12.2 B				4			
HCM Lane LOS	0.2	_			70			
HCM 95th %tile Q(veh)	U.Z	-			200			

OF THE PARTY.
53455600
MALTIN TOTAL
SIEMBER .
its a resident

7.110000017401140	*	→	>	6	←	4	1	1	-	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44	75	7	1			न ि			46	
Volume (vph)	98	261	157	83	112	73	49	301	48	33	304	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		75	0		0	0		0	0		0
Storage Lanes	1		1	1		0	0		0	0		0
Taper Length (ft)	25		-	25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor	0.00	1.00		0.98				1.00			1.00	
Frt			0.850		0.941			0.982			0.986	
Fit Protected		0.987	0.000	0.950				0.994			0.996	
Satd. Flow (prot)	0	3493	1583	1770	1753	0	0	3455	0	0	3476	0
FIt Permitted	Ů	0.814	,	0.950				0.889			0.867	
Satd. Flow (perm)	0	2871	1583	1739	1753	0	0	3086	0	0	3023	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			164		41			17			10	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		615			300			400			300	
Travel Time (s)		14.0			6.8			9.1			6.8	
Confl. Peds. (#/hr)	10	11.0		10			10			10		
Peak Hour Factor	0.93	0.93	0.93	0.99	0.99	0.99	0.89	0.89	0.89	0.96	0.96	0.96
Adj. Flow (vph)	105	281	169	84	113	74	55	338	54	34	317	35
Shared Lane Traffic (%)	100	201	,,,,									
Lane Group Flow (vph)	0	386	169	84	187	0	0	447	0	0	386	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	2010	0			12			0	Ü		0	_
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	Ő	0	Ō	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl÷Ex	CI+Ex	
Detector 1 Channel	.											
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.5	94	-		94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		EX										
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Split	NA		Split	NA		Perm	NA	
Protected Phases	. 0,,,,,	2		1	1		7	7			8	

Arcadia Crossing, Park at Prospect, West Hartford 9/30/2015 Combined Weekday AM Peak Bubaris Traffic Associates

Synchro 8 Light Report Page 1

	J	>	*	1	4	4	1	†	1	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2		2			8		8	8	
Detector Phase	2	2	2	1	1		7	7		8	8	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	6.0	6.0		3.0	3.0		12.0	12.0	
Minimum Split (s)	18.0	18.0	18.0	9.0	9.0		6.0	6.0		18.0	18.0	
Total Split (s)	23.0	23.0	23.0	12.0	12.0		9.0	9.0		22.0	22.0	
Total Split (%)	25.6%	25.6%	25.6%	13.3%	13.3%		10.0%	10.0%		24.4%	24.4%	
Maximum Green (s)	17.0	17.0	17.0	9.0	9.0		6.0	6.0		16.0	16.0	
Yellow Time (s)	4.0	4.0	4.0	3.0	3.0		3.0	3.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	0.0	0.0		0.0	0.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)		6.0	6.0	3.0	3.0			3.0			6.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?										Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min	Min	None	None		None	None		Min	Min	
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)											40.5	
Act Effct Green (s)		14.7	14.7	8.2	29.0			23.0			13.7	
Actuated g/C Ratio		0.23	0.23	0.13	0.45			0.35			0.21	
v/c Ratio		0.59	0.35	0.38	0.23			0.39			0.60	
Control Delay		28.6	7.7	35.0	11.3			16.5			28.8	
Queue Delay		0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay		28.6	7.7	35.0	11.3			16.5			28.8	
LOS		С	Α	D	В			В			С	
Approach Delay		22.2			18.6			16.5			28.8	
Approach LOS		С			В			В			С	
Queue Length 50th (ft)		64	1	28	28			52			64	
Queue Length 95th (ft)		159	55	92	109			142			156	
Internal Link Dist (ft)		535			220			320			220	
Turn Bay Length (ft)			75								770	
Base Capacity (vph)		778	548	254	783			1141			779	
Starvation Cap Reductn		0	0	0	0			0			0	
Spillback Cap Reductn		0	0	0	0			0			0	
Storage Cap Reductn		0	0	0	0			0			0	
Reduced v/c Ratio		0.50	0.31	0.33	0.24			0.39			0.50	

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 64.8

Natural Cycle: 75

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.60 Intersection Signal Delay: 21.6

Intersection Capacity Utilization 58.8%

Analysis Period (min) 15

Intersection LOS: C ICU Level of Service B Lanes, Volumes, Timings 7: Prospect Avenue & Park Road Arcadia Crossing, Park at Prospect, West Hartford Combined Weekday AM Peak

Splits and Phases:	7: Prospect Avenue & Park Roa	ad		
₹	→ e2	Å\$63	★	▼ Øô
12.5	23.5	245	9 s	72.5

Internation	SAMULE HOLD	name and the same		THE REAL PROPERTY.	Who was in successful to be a second of the		WEST 504
Intersection Int Delay, s/veh	0.9		37/10/10/10/10				
ant Delay, Siveri	0.0						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	18205040
Vol, veh/h	31	18	9	365	516	8	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	_	None	-	None	
Storage Length	0		2	_			
/eh in Median Storage, #		_		0	0		
Grade, %	0	_	2	0	0	-	
Peak Hour Factor	92	92	100	89	96	100	
leavy Vehicles, %	2	2	2	2	2	2	
Nymt Flow	34	20	9	410	538	8	
ivilit i low	01						
lajor/Minor	Minor2	and the same	Major1	1000	Major2	V S. B. I	A SHE
Conflicting Flow All	765	273	546	0	-	0	
Stage 1	542		_	_			
Stage 2	223	-		_			
itical Hdwy	6.84	6.94	4.14	-	~		
itical Hdwy Stg 1	5.84	-		-			
itical Hdwy Stg 2	5.84		-	-			
ollow-up Hdwy	3.52	3.32	2.22	-			
ot Cap-1 Maneuver	340	725	1019		-	. 15	
Stage 1	547	, 20	.0.0	-		25	
Stage 2	793		2			2	
atoon blocked, %	100			- 6	-	-	
ov Cap-1 Maneuver	336	725	1019		100	20	
ov Cap-1 Maneuver	336	120	1010	3		2	
Stage 1	547	8	1	į.		_	
_	784		- 3	- 3	-	54	
Stage 2	104	-	-	3			
proach	EB	HE SOURS	NB	Salating.	SB	10000	SEADON
CM Control Delay, s	14.9		0.2		0		
CM LOS	14.3 B		0.2		O		
OW LOS	Ь						
linor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR		SEASON SEASONS	NE P	ISHES!
apacity (veh/h)	1019	- 418	(*) *				
CM Lane V/C Ratio	0.009	- 0.127					
CM Control Delay (s)	8.6	0 14.9					
CM Lane LOS	Α	A B					
CM 95th %tile Q(veh)	0	- 0.4					
OIM SORT YORK (ACII)	J	- 0.4	(6)				

Exhibit 21
Traffic Operations Analysis Worksheets
Combined 2017 PM Peak

Intersection	MANAGEMENT	tay (25)	SERVICE OF THE PERSON NAMED IN	e de la constante de la consta	(E)	endra	HAR TOPE	Ribertonia	A PROPERTY OF THE
Int Delay, s/veh	2.3								
Movement	EBL	EBT	IONISCO.		WBT	WBR	SBL	SBR	
Vol, veh/h	45	298			414	25	36	66	
Conflicting Peds, #/hr	0	0			0	0	0	0	
Sign Control	Free	Free			Free	Free	Stop	Stop	
RT Channelized	-	None			-	None	-	None	
Storage Length	-	-			-	-	0	5.5	
/eh in Median Storage, #	<u>.</u>	0			0	-	0	-	
Grade, %	-	0			0	-	0	-	
Peak Hour Factor	99	99			95	95	90	90	
Heavy Vehicles, %	2	2			2	2	2	2	
Mvmt Flow	45	301			436	26	40	73	
false & from	Major1			STATE OF THE PARTY OF	Major2	n Garden	Minor2	samuenes	
Major/Minor		0			Viajui Z	0	841	449	
Conflicting Flow All	462	0			-	U	449	443	
Stage 1	-				-		392		
Stage 2	4.40				- 5	-	6.42	6.22	
Critical Hdwy	4.12				7	100	5.42		
Critical Hdwy Stg 1	7				_	_	5.42		
Critical Hdwy Stg 2	0.040				77				
follow-up Hdwy	2.218				5	(F)	3.518	3.318	
Pot Cap-1 Maneuver	1099				3		335	610	
Stage 1					-	- 3	643	7.05	
Stage 2	- 5	-			- 8	-	683		
Platoon blocked, %		-				- 3	040	040	
Mov Cap-1 Maneuver	1099	-				-	319	610	
Vlov Cap-2 Maneuver	-				-		319		
Stage 1	- 2	-					643		
Stage 2	8	7.			-	7	650		
Approach	EB	ene	1957000		WB	N ENG	SB	SUCCESSION OF THE PERSON OF TH	SCHOOL STORY
CM Control Delay, s	1.1				0		15.3		
1CM LOS	1.1				U		C		
				100000		2 12			and the second second second second
//inor Lane/Major Mvmt	EBL	EBT	WBT W	BR SBLn1	A STATE OF		olett Meritik Allen	THE MISSISSIPPLY NEWS	
Capacity (veh/h)	1099		-	- 461					
ICM Lane V/C Ratio	0.041	-	*:	- 0.246					
HCM Control Delay (s)	8.4	0	*	- 15.3					
HCM Lane LOS	Α	Α	55	· C					
HCM 95th %tile Q(veh)	0.1			- 1					

Intersection	wanted	SHV	ė išilio	and the	U SOL		ALCHINE:	
Int Delay, s/veh	0.5							
Movement	DESIGNATION OF THE PERSON	EBT	EBR	WB	L WBT	NBL	NBR	
Vol, veh/h		334	6	2	0 437	2	12	
Conflicting Peds, #/hr		0	0		0 0	0	0	9
Sign Control		Free	Free	Fre		Stop	Stop	
RT Channelized		-	None		- None	-	None	
Storage Length		-	-			0		
Veh in Median Storage, #		0	-		- 0	0		
Grade, %		0	-		- 0	0	-	
Peak Hour Factor		99	99	9	5 95	61	61	
Heavy Vehicles, %		2	2		2 2	2	2	
Mvmt Flow		337	6	2	1 460	3	20	
Major/Minor	M	ajor1	CONTRACTOR OF THE PERSON OF TH	Major	2	Minor1	HO SHALL	
	IVI	0	0	34		842	340	
Conflicting Flow All		U	U	34		340	040	
Stage 1			-			502		
Stage 2		1.5	-	4.1		6.42	6.22	
Critical Hdwy		-		7.1		5.42	0.22	
Critical Hdwy Stg 1			_		5X 8	5.42		
Critical Hdwy Stg 2 Follow-up Hdwy		ं	5	2.21	R	3.518	3.318	
		-	- 5	121		334	702	
Pot Cap-1 Maneuver		- 5	- 5	141	0	721	702	
· Stage 1						608		
Stage 2		-			5% S	000		
Platoon blocked, %				121	6	326	702	
Mov Cap-1 Maneuver		0.50		121		326	7.02	
Mov Cap-2 Maneuver		150	5		š	721		
Stage 1			·			594		
Stage 2		17.				554		
Approach	E14.1514	EB		W	3	NB	CHURE	ASSESSED BY
HCM Control Delay, s		0		0.	4	11.2		
HCM LOS						В		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL WB		COLORGICAL		
	603		2011	1216	-			
Capacity (veh/h)	0.038	-		0.017				
HCM Control Dolay (s)	11.2	120	_		0			
HCM Control Delay (s)	11.2 B	-	_		о Д			
HCM Lane LOS			-	0.1				
HCM 95th %tile Q(veh)	0.1	(3)	-	Ų. I	*4			

Intersection	CONTRACTOR		days a	nostali una	STATE OF	A DESCRIPTION OF THE PARTY OF T	DESCRIPTION OF	
Int Delay, s/veh	1.2							
••								
Movement	046901	EBT	EBR	WBL	WBT	NBL	NBR	ACM STATE AND ADDRESS.
Vol, veh/h	The second second	315	32	41	457	20	32	
Conflicting Peds, #/hr		0	0	0	0	0	0	
Sign Control		Free	Free	Free	Free	Stop	Stop	
RT Channelized		-	None	-	None	-	None	
Storage Length			*	0	-	0	-	
Veh in Median Storage, #	1	0	**	-	0	0	-	
Grade, %		0	**	1.15	-	0	-	
Peak Hour Factor		99	100	100		92	92	
Heavy Vehicles, %		- 2	2	2		2	2	
Mvmt Flow		318	32	41	462	22	35	
Major/Minor		Major1	5 32	Major2		Minor1		
Conflicting Flow All		0	0	350	0	878	334	
Stage 1			+	-	**	334		
Stage 2			*	100	*	544		
Critical Hdwy		-	*3	4.12	-	6.42	6.22	
Critical Hdwy Stg 1			*	55	-	5.42		
Critical Hdwy Stg 2			**	V.5	. č	5.42		
Follow-up Hdwy			*	2.218	-	3.518	3.318	
Pot Cap-1 Maneuver			*	1209	25	318	708	
Stage 1		3	*	-	*	725		
Stage 2		-	*	-	-	582	-	
Platoon blocked, %		-	*5		-			
Mov Cap-1 Maneuver		100	*	1209	::	303	708	
Mov Cap-2 Maneuver		(2)	- 5	-	ैं	303		
Stage 1		(*)	70	(5)		725		
Stage 2			*	8.3	i i	555	100	
	0 1 1 5 1 5 1 PM	FD			STOLENS	ND.		IN MUNICIPALITY OF THE PARTY OF
Approach		EB		WB	MILE B	NB.		
HCM Control Delay, s		0		0.7		13.7		
HCM LOS						В		
Minor Lang/Major Mumt	NBLn1	EBT	EBR	WBL WBT			120111112562	
Minor Lane/Major Mvmt	468	ED1	LUN	1209 -				
Capacity (veh/h)	0.121	-		0.004				
HCM Control Dolory (s)	13.7			8.1 0				
HCM Control Delay (s) HCM Lane LOS	13.7 B	-	_	A A				
	0.4	-	-					
HCM 95th %tile Q(veh)	0.4	-	-	0.1				

Lane Configurations	<u> </u>	۶		7	1	←	4	4	1	-	1	ļ	4
Lane Configurations	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (yrb)			416	71	75	र्व			લીક			476	
Ideal Flow (ryphp)	•	62		101	185		85	80		103	46	439	74
Storage Length (ff)			1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanels	7 7 7						0	0		0	0		0
Taper Length (fit)							0	0		0	0		0
Lane Util. Factor	_										25		
Ped Bike Factor			0.95	1.00		1.00	1.00		0.95	0.95		0.95	0.95
Frit		0.00				,,,,,							
Fit Protected 0.987 0.950 0.994 0.996 0.996 0.345 0.345 0.752 0.950 0.800 0.800 0.800 0.801 0.80			1.00	0.850	0.00	0.970							
Sald, Flow (prot) 0 3493 1583 1770 1807 0 0 3434 0 0 3455 Fit Permitted 0.752 0.950 0.950 0.800 0.800 0.821 Satd. Flow (perm) 0 2655 1583 1736 1807 0 0 2761 0 0 2847 Right Turn on Red Yes Yes Yes Yes Yes Yes 17 Link Speed (mph) 30 30 30 30 30 30 30 Link Distance (ft) 615 300 400 400 300 30 Link Distance (ft) 615 303 0.93 0.93 0.99 0.99 0.99 0.89 0.89 0.89 0.90 0.96 0.68 Confl. Peds. (#/hr) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0.99 0.			0.987	0.000	0.950	0.010							
Fit Permitted		0		1583		1807	0	0		0	0		0
Sald, Flow (perm) 0 2655 1583 1736 1807 0 0 2761 0 0 2847 Right Turn on Red Yes Yes Yes Yes Yes 17 Sald, Flow (RTOR) 133 16 24 17 11 Link Speed (mph) 30 30 30 30 30 Link Distance (ft) 615 300 400 10 300 Confl. Peds, (#/hr) 10 <td< td=""><td></td><td>U</td><td></td><td>1000</td><td></td><td>1007</td><td>Ü</td><td>Ŭ</td><td></td><td>·</td><td></td><td></td><td></td></td<>		U		1000		1007	Ü	Ŭ		·			
Right Turn on Red		0		1583		1807	0	0		0	0		0
Satd. Flow (RTOR)		v	2000		1100	1001		•					Yes
Link Speed (mph)	<u> </u>					16			24	100		17	, 00
Link Distance (ft) 615	• •		30	100									
Travel Time (s) 14.0													
Confi. Peds. (#hr) 10 10 10 10 10 10 10 10 Peak Hour Factor 0.93 0.93 0.93 0.99 0.99 0.99 0.89 0.89 0.89 0.89 0.89													
Peak Hour Factor 0.93 0.93 0.93 0.99 0.99 0.99 0.89 0.89 0.89 0.96 0.96 0.96 Adj. Flow (vph) 67 183 109 187 337 86 90 533 116 48 457 Shared Lane Traffic (%) Lane Group Flow (vph) 0 250 109 187 423 0 0 739 0 0 582 Enter Blocked Intersection No N		10	14.0		10	0.0		10	0.1		10	0.0	
Adj. Flow (vph) 67 183 109 187 337 86 90 533 116 48 457 Shared Lane Traffic (%) Lane Group Flow (vph) 0 250 109 187 423 0 0 739 0 0 582 Enter Blocked Intersection Lane Alignment Left Left Right Left <td< td=""><td>* *</td><td></td><td>ก ดูว</td><td>ก ๑๖</td><td></td><td>0.00</td><td>0 99</td><td></td><td>0.89</td><td>0.89</td><td></td><td>0.96</td><td>0.96</td></td<>	* *		ก ดูว	ก ๑๖		0.00	0 99		0.89	0.89		0.96	0.96
Shared Lane Traffic (%) Lane Group Flow (vph) 0 250 109 187 423 0 0 739 0 0 582													77
Lane Group Flow (vph)		0,	100	100	101	001	00		000	,,,			
Enter Blocked Intersection		n	250	109	187	423	0	0	739	0	0	582	0
Lane Alignment Left Left Right Left Right Left Left Left Right Right Left								-		_			No
Median Width(ff) 0 12 0 0 Link Offset(ff) 0 0 0 0 Crosswalk Width(ff) 16 16 16 16 Two way Left Turn Lane 1.00<													Right
Link Offset(fit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 10 10 10 10 100 10 100 100 100<		Lon		ragin	2011		. 55						
Crosswalk Width(fit) 16 16 16 16 16 16 16 16 16 16 16 16 Two way Left Turn Lane 100 1.00													
Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Headway Factor 1.00	* *												
Turning Speed (mph) 15 9 15 1 2 1	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 2 1 1 2 1 1 2 1			1100										9
Detector Template Left Thru Right Left Thru Left Thru <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>2</td> <td>-</td> <td></td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td>			2			2	-		2			2	
Leading Detector (ft) 20 100 20 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 0													
Trailing Detector (ft) 0	•												
Detector 1 Position(ft) 0											0	0	
Detector 1 Size(ft) 20 6 20 20 6 20 6 20 6 Detector 1 Type CI+Ex		_	-	0				0			0		
Detector 1 Type CI+Ex								20	6				
Detector 1 Channel Detector 1 Extend (s) 0.0									CI+Ex			CI+Ex	
Detector 1 Extend (s) 0.0		4. —			-								
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
	Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft) 94 94 94		5.5		0.0									
Detector 2 Size(ft) 6 6 6													
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex													
Detector 2 Channel													
Detector 2 Extend (s) 0.0 0.0 0.0 0.0			0.0			0.0			0.0			0.0	
Turn Type Perm NA Perm Split NA Split NA Perm NA		Perm		Perm	Split			Split			Perm		
Protected Phases 2 1 1 7 7 8													

Arcadia Crossing, Park at Prospect, West Hartford 9/30/2015 Combined Weekday PM Peak Bubaris Traffic Associates

Synchro 8 Light Report Page 1

	۶	→	*	1	4	*	4	†	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2		2		2			8		8	8	
Detector Phase	2	2	2	1	1		7	7		8	8	
Switch Phase												
Minimum Initial (s)	12.0	12.0	12.0	6.0	6.0		3.0	3.0		12.0	12.0	
Minimum Split (s)	18.0	18.0	18.0	9.0	9.0		6.0	6.0		18.0	18.0	
Total Split (s)	21.0	21.0	21.0	13.0	13.0		8.0	8.0		24.0	24.0	
Total Split (%)	23.3%	23.3%	23.3%	14.4%	14.4%		8.9%	8.9%		26.7%	26.7%	
Maximum Green (s)	15.0	15.0	15.0	10.0	10.0		5.0	5.0		18.0	18.0	
Yellow Time (s)	4.0	4.0	4.0	3.0	3.0		3.0	3.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	0.0	0.0		0.0	0.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0			0.0	
Total Lost Time (s)		6.0	6.0	3.0	3.0			3.0			6.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?										Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Mìn	Min	None	None		None	None		Min	Min	
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		13.0	13.0	10.2	29.3			26.5			18.4	
Actuated g/C Ratio		0.19	0.19	0.15	0.43			0.39			0.27	
v/c Ratio		0.50	0.27	0.71	0.54			0.65			0.75	
Control Delay		30.3	6.0	47.6	19.0			20.8			32.1	
Queue Delay		0.0	0.0	0.0	0.0			0.0			0.0	
Total Delay		30.3	6.0	47.6	19.0			20.8			32.1	
LOS		С	Α	D	В			С			С	
Approach Delay		22.9			27.8			20.8			32.1	
Approach LOS		C			С			С			С	
Queue Length 50th (ft)		45	0	68	106			92			101	
Queue Length 95th (ft)		109	32	#236	299			#267			#286	
Internal Link Dist (ft)		535			220			320			220	
Turn Bay Length (ft)			75									
Base Capacity (vph)		591	456	262	780			1130			773	
Starvation Cap Reductn		0	0	0	0			0			0	
Spillback Cap Reductn		0	0	0	0			0			0	
Storage Cap Reductn		0	0	0	0			0			0	
Reduced v/c Ratio		0.42	0.24	0.71	0.54			0.65			0.75	

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 68.7

Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.75 Intersection Signal Delay: 25.9 Intersection Capacity Utilization 84.0%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Arcadia Crossing, Park at Prospect, West Hartford Combined Weekday PM Peak

Lanes, Volumes, Timings 7: Prospect Avenue & Park Road

Queue shown is maximum after two cycles.

Splits and Phases: 7: Prospect Avenue & Park Road

7 01	p2	#2 ₀₃	1 07	¥ 23
13 s	215	24s	3 s	24 s

Intersection	Seventer)		VEA.			183	
Int Delay, s/veh	0.8						
Movement	EBL	EBR	NE	L NBT	SBT	SBR	
Vol, veh/h	18	10	3	7 639	682	31	
Conflicting Peds, #/hr	0	0		0 0	0	0	
Sign Control	Stop	Stop	Fre	e Free	Free	Free	
RT Channelized	-	None		- None		None	
Storage Length	0	023			-	-	
Veh in Median Storage,	# 0	-		- 0	0	52	
Grade, %	0	-		- 0	0	2.5	
Peak Hour Factor	92	92	10	00 89	96	100	
Heavy Vehicles, %	2	2		2 2	2	2	
Mvmt Flow	20	11	3	718	710	31	
Major/Minor	Minor2	PHINASTE	Majo	1	Major2	STAR!	
Conflicting Flow All	1159	371	74	1 0	9	0	
Stage 1	726	-		T. 3			
Stage 2	433	7.50		-			
Critical Hdwy	6.84	6.94	4.1	4 -	-	-	
Critical Hdwy Stg 1	5.84	-				-	
Critical Hdwy Stg 2	5.84	107.0			-	-	
Follow-up Hdwy	3.52	3.32	2.2	2 -		-	
Pot Cap-1 Maneuver	189	626	88	2 -		27	
Stage 1	440	0.70				1.0	
Stage 2	621				2	12	
Platoon blocked, %				-		-	
Mov Cap-1 Maneuver	176	626	88	2 -	월		
Mov Cap-2 Maneuver	176			g 72	2	~	
Stage 1	440			2 72	1	-	
Stage 2	577	-			2		
Approach	EB		N		SB		
HCM Control Delay, s	22.4		0	7	0		
HCM LOS	С						
A 81 1 /A 8 - 1 B 8 - 1	NDI	NOT COL-4	CDT CD	D			NECOTOR SECURIOR
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SB				
Capacity (veh/h)	862	- 237	ā	-			
HCM Lane V/C Ratio	0.043	- 0.128	#	÷			
HCM Control Delay (s)	9.4	0.3 22.4	<u>=</u>	a .			
HCM Lane LOS	Α	A C	75				
HCM 95th %tile Q(veh)	0.1	- 0.4	*	7			

	*		*	1	4	*	4	†	1	1	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	K	4	7	T	1>			4P			414	
Volume (vph)	109	122	109	57	277	113	201	537	92	95	493	248
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Frt	1,00		0.850		0.956			0.983			0.955	
Fit Protected	0.950		0.000	0.950				0.988			0.994	
Satd. Flow (prot)	1770	1863	1583	1770	1781	0	0	3437	0	0	3360	0
Fit Permitted	0.950	7000	.000	0.679		_		0.529			0.678	
Satd. Flow (perm)	1770	1863	1583	1265	1781	0	0	1840	0	0	2292	0
Right Turn on Red	1770	1000	Yes	1200		Yes	_		Yes			Yes
Satd. Flow (RTOR)			119		16	, 55		15			58	
		30	110		30			30			30	
Link Speed (mph)		580			300			438			1290	
Link Distance (ft)		13.2			6.8			10.0			29.3	
Travel Time (s)	4.00	1.00	1.00	0.73	0.73	0.73	0.84	0.84	0.84	0.99	0.99	0.99
Peak Hour Factor	1.00		1.00	78	379	155	239	639	110	96	498	251
Adj. Flow (vph)	109	122	109	10	3/8	100	200	000	110	30	750	201
Shared Lane Traffic (%)	400	400	400	70	534	0	0	988	0	0	845	0
Lane Group Flow (vph)	109	122	109	78			No	No	No	No	No	No
Enter Blocked Intersection	No	No	No	No	No	No		Left	Right	Left	Left	Right
Lane Alignment	Left	Left	Right	Left	Left	Right	Left		Nigit	Feir	0	rtigrit
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0 16			16	
Crosswalk Width(ft)		16			16			10			10	
Two way Left Turn Lane			4.00	4.00	4.00	4.00	4.00	4.00	4.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	9
Turning Speed (mph)	15		9	15		9	15	0	9	15	2	9
Number of Detectors	1	2	1	1	_ 2		1	2		1	2 Than	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Split	NA	Perm	Perm	NA		Split	NA		Perm	NA	
Protected Phases	. 3	3			4		1	1			2	
Permitted Phases		4	3	4	4			2		2		
Detector Phase	3	3	3	4	4		1	1		2	2	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	10.0	10.0		5.0	5.0		15.0	15.0	
Minimum Split (s)	9.0	9.0	9.0	16.0	16.0		9.0	9.0		22.0	22.0	

Arcadia Crossing, Park at Prospect, West Hartford 9/30/2015 Combined Weekday PM Peak Bubaris Traffic Associates

Synchro 8 Light Report Page 1

ENCLOSURE H Storm Drainage Report

Storm Drainage Report Center Development Corporation & Sisters of St. Joseph Corporation Arcadia Crossing One Park Road West Hartford, Connecticut

Prepared by:

Design Professionals, Inc. 21 Jeffrey Drive, PO Box 1167 South Windsor, CT 06074

October 14, 2015

Table of Contents

Section	Page
Introduction	1
Pre-Development Site Conditions	1
Post-Development Site Conditions	2
Storm Sewer Collection System	3
Analysis of Results	3
Water Quality	4
Flood Plain Management	4
Conclusion	4

Appendices

- A Watershed Computations (Pre-Development Conditions)
- B Watershed Computations (Post-Development Conditions)
- C Design Criteria
- D Storm Sewers Analysis
- E Stormceptor Sizing Report
- F Drainage Area Maps

Existing Conditions (DA-1)

Proposed Conditions (DA-2)

1. Introduction

The Center Development Corporation (CDC) and the Sisters of St. Joseph Corporation (SSJC) are planning to develop a 19.52 acre parcel of land located at the southwest corner of Park Road and Prospect Avenue in West Hartford, Connecticut. The proposed scope of work will include the redevelopment of the existing buildings on the property and construction of a new building to house 346 apartment units, together with all attendant parking, utilities, landscaping, lighting, and signage. Refer to the site plan drawings, entitled – "Arcadia Crossing, One Park Road, West Hartford, Connecticut, prepared by Design Professionals, Inc, et. al. dated October 14, 2015", as amended, for information regarding the proposed property development.

2. Pre-Development Site Conditions

The surficial characteristics of the site can primarily be classified as developed lands with a combination of grass, roof, and paved areas. A vast majority of the site drains southwest across the parcel to an existing brook. All stormwater captured by the brook is conveyed to the municipal drainage system in Prospect Avenue. Areas to the north of the existing building currently drain to the stormwater drainage system in Park Road. This system conveys all captured stormwater to the afore-mentioned brook running through the parcel. The remaining east side of the parcel sheet flows directly to the municipal storm drainage system in Prospect Avenue. Refer to the Existing Conditions Drainage Area Map included in Appendix F for watershed delineations.

In order to establish a hydrologic comparison between pre- and post-development conditions, an evaluation was performed to quantify the peak rate of stormwater discharge to each of the designated areas within and off the site. The NRCS as outlined in the USDA TR-55 Manual, was followed in predicting the peak rates of runoff and volumes. Hydraflow Hydrographs (version 2013) computer modeling software was used as application. Refer to Appendix C for design criteria implemented.

The peak rates of stormwater runoff discharging to neighboring properties were determined for the 5-, 10-, 25-, and 100-year storm events. Refer to Appendix A for the pre-developed conditions watershed computations.

3. Post-Development Site Conditions

To capture runoff from the new/renovated buildings and parking areas, multiple networks of catchbasins and storm drainage pipes have been designed to convey most of the site's generated runoff to a proposed detention basin. The detention basin was designed to be 4 feet deep and provide an available storage of 103,000± cubic feet. The detention basin will be fitted with an outlet structure sized with a 17 inch orifice positioned at the bottom of the basin at elevation 43.5 and a grate installed 1 foot below the top of the basin at elevation 46.5. This grate will serve as an emergency outlet along with a spillway set at elevation 47 should the outlet structure fail. All runoff collected from the northerly and westerly parking areas (outside of parking garage) will be treated by a Stormceptor STC-

2400 hydrodynamic separator before being discharged to the basin. Runoff leaving the roof and eastern grass areas will be conveyed directly to the detention basin though separate drainage networks. The southerly parking area will sheet flow directly to the basin. Proposed grading for outside the parking areas was done to limit the areas draining to Park Road and Prospect Avenue directly. Refer to the Proposed Drainage Area Map located in Appendix F for proposed watershed delineations. All proposed drainage watershed analysis computations can be found in Appendix B.

4. Storm Sewer Collection System

The proposed subsurface stormwater collection and conveyance system was designed to adequately convey proposed runoff under 10- year storm event conditions. The design of the storm sewers followed the guidelines set forth in the Connecticut Department of Transportation's Drainage Manual. It is estimated that during a 10-year storm event, all proposed subsurface culverts will convey storm runoff without resulting in any unacceptable flooding conditions. Hydraflow Storm Sewers computer software was used for analysis. The computations are included as Appendix D.

5. Analysis of Results

Hydraulic conditions related to storm drainage were evaluated for both proposed and existing conditions using Hydraflow Hydrographs (version 2013) computer modeling software to determine peak discharge rates of runoff leaving the site. Based on modeling from existing conditions, three discharge locations were identified as points of interest for assessing downstream effects. The following table contains the data generated from the Hydraflow software:

		TABLE 1									
	Peak Rate of Stormwater Discharge										
			Runoff Rate	-							
Watershed Area	Storm Event (Year)	Pre-developed Condition (ft ³ /second)	Post-developed Condition (ft ³ /second)	Net Change Rate of Runoff (ft ³ /second)							
DP#1 – To Park Road	5 10 25 100	2.83 3.56 4.55 6.33	0.69 0.86 1.10 1.52	-2.14 -2.69 -3.45 -4.81							
DP#2 - To Culvert	5 10 25 100	12.88 16.49 21.51 30.66	10.46 12.74 15.83 21.23	-2.42 -3.75 -5.68 -9.43							
DP#3 – To Prospect Ave	5 10 25 100	0.14 0.18 0.23 0.34	0.14 0.17 0.21 0.28	0.00 -0.01 -0.03 -0.06							

The above results demonstrate a net-reduction in peak flows leaving the site as compared to existing conditions.

6. Water Quality

The proposed stormceptor unit will serve to remove suspended solids of runoff collected from the northerly and westerly parking areas before discharging to the proposed detention basin for the site. Per manufacturer's specifications, the units are designed to achieve an 80% total suspended solid removal rating as recommended by The Connecticut Department of Energy and Environmental Protection. See Appendix E for our sizing and analysis report for the Stormceptor unit. This report was generated using design software from Imbrium Systems Inc.

7. Flood Plain Management

The site plan depicts an increase in the flood storage volume by means of an excavation adjacent to the detention basin.

8. Conclusion

It is our opinion that the proposed stormwater management design as presented herein and on the accompanying site plans, will not pose any significant detrimental impacts to the environment surrounding the site.

APPENDIX A
Watershed Computations
(Pre-Development Conditions)

Hydrograph Return Period Recap

Hyd.	Hydrograph	Inflow				Peak Out	flow (cfs)				Hydrograph
No.	type (origin)	hyd(s)	1-yr	2-yr	3-уг	5-yr	10-yr	25-уг	50-yr	100-yr	Description
1	SCS Runoff			0.328		0.515	0.647	0.828	0.990	1.153	TO EX. CATCHBASIN3
2	SCS Runoff			0.593		0.911	1.131	1.432	1.698	1.966	TO EX. CATHBASIN2
3	SCS Runoff			0.885		1.406	1.779	2.291	2.748	3.212	TO EX. CATCHBASIN1
4	SCS Runoff			0.081		0.137	0.177	0.234	0.286	0.338	DP#3 - PROSPECT AVE CATCHBA
5	SCS Runoff			1.574	-	2.502	3.164	4.076	4.890	5.714	WATERSHED#1
6	SCS Runoff			0.833		1.388	1.789	2.346	2.848	3.359	WATERSHED#2
7	SCS Runoff			1.422		2.498	3.294	4.413	5.432	6.477	WATERSHED#3
8	SCS Runoff			1.860		2.964	3.740	4.807	5.759	6.729	WATERSHED#4
9	SCS Runoff			0.864		1.519	2.000	2.679	3.298	3.933	WATERSHED#5
10	SCS Runoff	40 M for the 100 M		0.468		0.879	1.186	1.625	2.032	2.453	WATERSHED#6
11	SCS Runoff			0.329		0.424	0.487	0.571	0.644	0.718	WATERSHED#7
12	SCS Runoff			0.411		0.594	0.718	0.884	1.030	1.175	WATERSHED#8
13	SCS Runoff	non		1.677		2.159	2.480	2.907	3.280	3.653	WATERSHED#9
14	SCS Runoff			0.115		0.239	0.334	0.470	0.596	0.728	WATERSHED#10
15	SCS Runoff			0.210		0.270	0.310	0.363	0.410	0.457	WATERSHED#11
16	Combine	5, 6, 7,		6.603		11.12	14.40	18.98	23.11	27.34	WATER TO BROOK 1
17	Combine	8, 9, 10, 11, 12, 13,		2.671		3.585	4.206	5.043	5.783	6.528	WATER TO BROOK 2
18	Combine	14, 15, 16, 17		7.841		12.88	16.49	21.51	26.04	30.66	DP#2 - TOTAL WATER TO CULVER
19	Combine	1, 2, 3,		1.806		2.832	3.557	4.551	5.436	6.330	DP#1 - TO PARK ROAD

Proj. file: 3162 - EXISTING CONDITIONS.gpw

Tuesday, 10 / 13 / 2015

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

⊣yd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.515	2	728	1,988				TO EX. CATCHBASIN3
2	SCS Runoff	0.911	2	728	3,499				TO EX. CATHBASIN2
3	SCS Runoff	1.406	2	728	5,449	are service the last dis-			TO EX. CATCHBASIN1
4	SCS Runoff	0.137	2	730	539	*****			DP#3 - PROSPECT AVE CATCHBA
5	SCS Runoff	2.502	2	728	9,695				WATERSHED#1
6	SCS Runoff	1.388	2	738	6,982				WATERSHED#2
7	SCS Runoff	2.498	2	736	12,325				WATERSHED#3
8	SCS Runoff	2.964	2	734	13,176			60 NF 60 NF 75-19	WATERSHED#4
9	SCS Runoff	1.519	2	740	7,789			and such that was distributed.	WATERSHED#5
10	SCS Runoff	0.879	2	740	4,624			ar are air do mone	WATERSHED#6
11	SCS Runoff	0.424	2	724	1,447			and were that commonly life.	WATERSHED#7
12	SCS Runoff	0.594	2	726	2,034				WATERSHED#8
13	SCS Runoff	2.159	2	724	7,365				WATERSHED#9
14	SCS Runoff	0.239	2	730	1,017			district and opposite two	WATERSHED#10
15	SCS Runoff	0.270	2	724	921			who has also the ARP 400	WATERSHED#11
16	Combine	11.12	2	734	54,591	5, 6, 7,		w w + 2 - 2 - 2	WATER TO BROOK 1
17	Combine	3.585	2	724	12,785	8, 9, 10, 11, 12, 13,		and restriction raps and other	WATER TO BROOK 2
18	Combine	12.88	2	734	67,375	14, 15, 16, 17			DP#2 - TOTAL WATER TO CULVER
19	Combine	2.832	2	728	10,937	1, 2, 3,			DP#1 - TO PARK ROAD
316	62 - EXISTIN	G CONDI	TIONS.g	jpw	Return	Period: 5 Y	ear	Tuesday,	10 / 13 / 2015

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 1

TO EX. CATCHBASIN3

= SCS Runoff Peak discharge = 0.515 cfsHydrograph type Time to peak = 728 min Storm frequency = 5 yrsTime interval = 2 min Hyd. volume = 1,988 cuft Curve number = 78* Drainage area = 0.270 ac= 0.0 %Hydraulic length = 0 ftBasin Slope Time of conc. (Tc) $= 10.00 \, \text{min}$ Tc method = User = 4.10 inDistribution = Type III Total precip. = 484 Shape factor Storm duration = 24 hrs

^{*} Composite (Area/CN) = $[(0.090 \times 61) + (0.030 \times 74) + (0.070 \times 80) + (0.080 \times 98)] / 0.270$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 2

TO EX. CATHBASIN2

= SCS Runoff Peak discharge = 0.911 cfsHydrograph type Time to peak = 728 min Storm frequency = 5 yrsTime interval = 2 min Hyd. volume = 3,499 cuftCurve number = 80* Drainage area = 0.440 acBasin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 10.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III = 484 = 24 hrs Shape factor Storm duration

^{*} Composite (Area/CN) = $[(0.130 \times 98) + (0.070 \times 98) + (0.200 \times 61) + (0.040 \times 80)] / 0.440$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 3

TO EX. CATCHBASIN1

Hydrograph type = SCS Runoff Peak discharge = 1.406 cfsStorm frequency Time to peak = 728 min = 5 yrsTime interval = 2 min Hyd. volume = 5.449 cuft= 77* Curve number Drainage area = 0.770 ac= 0 ftBasin Slope = 0.0 %Hydraulic length Time of conc. (Tc) $= 10.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III Shape factor = 484 Storm duration = 24 hrs

^{*} Composite (Area/CN) = $[(0.150 \times 98) + (0.110 \times 98) + (0.380 \times 61) + (0.130 \times 80)] / 0.770$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 4

DP#3 - PROSPECT AVE CATCHBASIN

Hydrograph type	= SCS Runoff	Peak discharge	= 0.137 cfs
Storm frequency	= 5 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 539 cuft
Drainage area	= 0.090 ac	Curve number	= 73*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(0.004 \times 98) + (0.017 \times 61) + (0.067 \times 74)] / 0.090$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 5

WATERSHED#1

= 2.502 cfsHydrograph type = SCS Runoff Peak discharge Time to peak = 728 min Storm frequency = 5 yrsHyd. volume = 9.695 cuftTime interval = 2 min Curve number = 77* Drainage area = 1.370 acHydraulic length = 0 ft= 0.0 %Basin Slope Time of conc. (Tc) $= 11.00 \, \text{min}$ Tc method = TR55 Distribution = Type III = 4.10 inTotal precip. = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.160 \times 98) + (0.090 \times 98) + (0.190 \times 61) + (0.910 \times 74) + (0.020 \times 80)] / 1.370$

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 5 WATERSHED#1

<u>Description</u>	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.120 = 260.0 = 3.20 = 6.50		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 10.99	+	0.00	+	0.00	=	10.99
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Paved =0.00		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.050 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.050		0.00 0.00 0.015		0.00 0.00 0.015		
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.050 =0.00	+	0.00 0.00 0.015 0.00	+	0.00 0.00 0.015	=	0.00

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 6

WATERSHED#2

= SCS Runoff Peak discharge = 1.388 cfsHydrograph type Storm frequency = 5 yrsTime to peak = 738 min Time interval = 2 min Hyd. volume = 6,982 cuft= 1.170 acCurve number = 74* Drainage area = 0.0 % Hydraulic length = 0 ftBasin Slope = TR55 Time of conc. (Tc) = 24.30 min Tc method Distribution = Type III Total precip. = 4.10 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.110 \times 98) + (0.220 \times 61) + (0.840 \times 74)] / 1.170$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 6 WATERSHED#2

Description	A		В		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 300.0 = 3.20 = 5.50		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 22.93	+	0.00	+	0.00	=	22.93
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 159.58 = 1.50 = Unpave =1.98	ed	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.35	+	0.00	+	0.00	=	1.35
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.050 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							24.30 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 7

WATERSHED#3

Hydrograph type = SCS Runoff Peak discharge = 2.498 cfs= 736 min Storm frequency = 5 yrsTime to peak = 12,325 cuft Hyd. volume Time interval = 2 min = 71* Drainage area = 2.280 acCurve number Hydraulic length = 0 ft= 0.0 %Basin Slope Tc method = TR55 Time of conc. (Tc) $= 20.80 \, \text{min}$ = Type III = 4.10 inDistribution Total precip. Shape factor = 484 Storm duration = 24 hrs

^{*} Composite (Area/CN) = $[(0.300 \times 98) + (0.050 \times 98) + (1.240 \times 61) + (0.690 \times 74)] / 2.280$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 7 WATERSHED#3

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.200 = 300.0 = 3.20 = 5.50		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		40.92
Travel Time (min)	= 19.82	+	0.00	+	0.00	=	19.82
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 160.07 = 2.80 = Unpaved =2.70	i	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.99	+	0.00	+	0.00	=	0.99
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.050 =0.00		0.00 0.00 0.00 0.015		0.00 0.00 0.00 0.015		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							20.80 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 8

WATERSHED#4

Hydrograph type	= SCS Runoff	Peak discharge	= 2.964 cfs
Storm frequency	= 5 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 13,176 cuft
Drainage area	= 1.920 ac	Curve number	= 77*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.80 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(0.500 \times 98) + (0.050 \times 98) + (0.510 \times 61) + (0.860 \times 74)] / 1.920$

TR55 Tc Worksheet

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 8 WATERSHED#4

Description	A		В		C		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.200 = 300.0 = 3.20 = 7.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 18.00	+	0.00	+	0.00	=	18.00
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 113.66 = 2.11 = Unpaved =2.34	I	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.81	+	0.00	+	0.00	=	0.81
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.050 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							18.80 mir

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 9

WATERSHED#5

Hydrograph type = SCS Runoff Peak discharge = 1.519 cfsTime to peak = 740 min Storm frequency = 5 yrsHyd. volume = 7,789 cuftTime interval $= 2 \min$ Curve number = 71* Drainage area = 1.490 acHydraulic length = 0 ftBasin Slope = 0.0 %Tc method = TR55 Time of conc. (Tc) $= 25.70 \, \text{min}$ Distribution = Type III = 4.10 inTotal precip. = 24 hrs Shape factor = 484 Storm duration

^{*} Composite (Area/CN) = [(0.340 x 61) + (1.150 x 74)] / 1.490

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 9 WATERSHED#5

Description		A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	=	0.240 300.0 3.20 4.20		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	=	25.54	+	0.00	+	0.00	=	25.54
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	=	31.58 7.60 Unpaved .45		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	=	0.12	+	0.00	+	0.00	=	0.12
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= =	0.00 0.00 0.00 0.050 0.050		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
Flow length (ft)	({(0.0({0		0.0		0.0		
Travel Time (min)	=	0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc								25.70 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 10

WATERSHED#6

Hydrograph type = SCS Runoff Peak discharge = 0.879 cfsStorm frequency = 5 yrsTime to peak = 740 min Time interval = 2 min Hyd. volume = 4,624 cuft Drainage area = 1.020 acCurve number = 68* Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) Tc method = TR55 $= 25.70 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III Storm duration Shape factor = 484 = 24 hrs

^{*} Composite (Area/CN) = $[(0.180 \times 98) + (0.810 \times 61) + (0.030 \times 74)] / 1.020$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No. 10 WATERSHED#6

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 300.0 = 3.20 = 4.50		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 24.85	+	0.00	+	0.00	=	24.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 43.09 = 3.83 = Paved =3.98		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.18	+	0.00	+	0.00	=	0.18
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%)	= 0.20 = 1.57 = 4.17		0.00 0.00 0.00		0.00 0.00 0.00		
Manning's n-value Velocity (ft/s)	= 0.011 =6.96		0.015		0.015		
Velocity (ft/s)	=6.96	+	0.00	+	0.00	=	0.69

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 11

WATERSHED#7

= SCS Runoff Peak discharge = 0.424 cfsHydrograph type Storm frequency Time to peak = 724 min = 5 yrsTime interval = 2 min Hyd. volume = 1,447 cuftCurve number = 98* Drainage area = 0.110 ac= 0.0 %Hydraulic length = 0 ftBasin Slope Time of conc. (Tc) $= 6.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III = 484 Shape factor Storm duration = 24 hrs

^{*} Composite (Area/CN) = [(0.106 x 98)] / 0.110

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 12

WATERSHED#8

Peak discharge = 0.594 cfsHydrograph type = SCS Runoff Time to peak = 726 min Storm frequency = 5 yrs= 2 min Hyd. volume = 2.034 cuftTime interval = 0.220 acCurve number Drainage area = 85* Hydraulic length = 0 ftBasin Slope = 0.0 %Time of conc. (Tc) $= 8.00 \, \text{min}$ Tc method = User Distribution = Type III Total precip. = 4.10 in= 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = [(0.060 x 98) + (0.080 x 98) + (0.080 x 61)] / 0.220

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 13

WATERSHED#9

= SCS Runoff Peak discharge = 2.159 cfsHydrograph type Storm frequency = 5 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 7,365 cuft= 98* Drainage area = 0.560 acCurve number = 0.0 %Hydraulic length = 0 ftBasin Slope Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Tc method Total precip. = 4.10 inDistribution = Type III = 484 Shape factor Storm duration = 24 hrs

^{*} Composite (Area/CN) = $[(0.490 \times 98) + (0.070 \times 98)] / 0.560$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 14

WATERSHED#10

Hydrograph type = SCS Runoff Peak discharge = 0.239 cfsStorm frequency Time to peak = 730 min = 5 yrsTime interval = 2 min Hyd. volume = 1,017 cuftCurve number = 65* Drainage area = 0.250 acBasin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) $= 10.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.030 \times 98) + (0.220 \times 61)] / 0.250$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 15

WATERSHED#11

Hydrograph type = SCS Runoff Peak discharge = 0.270 cfsTime to peak = 724 min Storm frequency = 5 yrsTime interval = 2 min Hyd. volume = 921 cuft Curve number = 98* Drainage area = 0.070 acBasin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 6.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration Shape factor = 24 hrs

^{*} Composite (Area/CN) = [(0.072 x 98)] / 0.070

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 16

WATER TO BROOK 1

Hydrograph type = Combine Storm frequency = 5 yrs Time interval = 2 min Inflow hyds. = 5, 6, 7, 8, 9, 10 Peak discharge = 11.12 cfs
Time to peak = 734 min
Hyd. volume = 54,591 cuft
Contrib. drain. area = 9.250 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 17

WATER TO BROOK 2

Hydrograph type Storm frequency Time interval = Combine = 5 yrs

= 2 min

Inflow hyds. = 11, 12, 13, 14, 15

Peak discharge = 3.585 cfs
Time to peak = 724 min
Hyd. volume = 12,785 cuft

Contrib. drain. area = 1.210 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 18

DP#2 - TOTAL WATER TO CULVERT ON PROSPECT AVE.

Hydrograph type = Combine Storm frequency = 5 yrs Time interval = 2 min Inflow hyds. = 16, 17 Peak discharge = 12.88 cfs Time to peak = 734 min Hyd. volume = 67,375 cuft Contrib. drain. area = 0.000 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 19

DP#1 - TO PARK ROAD

Hydrograph type = Combine
Storm frequency = 5 yrs
Time interval = 2 min
Inflow hyds = 1, 2, 3

Peak discharge = 2.832 cfs
Time to peak = 728 min
Hyd. volume = 10,937 cuft
Contrib. drain. area = 1.480 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.647	2	728	2,485				TO EX. CATCHBASIN3
2	SCS Runoff	1.131	2	728	4,337			P 40-40 =	TO EX. CATHBASIN2
3	SCS Runoff	1.779	2	728	6,843		and the last 100 tills 100		TO EX. CATCHBASIN1
4	SCS Runoff	0.177	2	730	690		*****		DP#3 - PROSPECT AVE CATCHBA
5	SCS Runoff	3.164	2	728	12,175				WATERSHED#1
6	SCS Runoff	1.789	2	738	8,894	MA AND AND THE REAL PROPERTY.			WATERSHED#2
7	SCS Runoff	3.294	2	736	15,943	w-min and 60	20° 20° 20° 20° 20° 20° 20° 20° 20° 20°		WATERSHED#3
8	SCS Runoff	3.740	2	734	16,546	w-64 fb-10-00-00			WATERSHED#4
9	SCS Runoff	2.000	2	738	10,076				WATERSHED#5
10	SCS Runoff	1.186	2	740	6,084	m-46 0 M 40 M			WATERSHED#6
11	SCS Runoff	0.487	2	724	1,671			SEE TOO SEP TAY BUT TOO	WATERSHED#7
12	SCS Runoff	0.718	2	726	2,469	gas specific per sire sir		diament has dire verr dia	WATERSHED#8
13	SCS Runoff	2.480	2	724	8,507		-	10 10 to 40 11 10	WATERSHED#9
14	SCS Runoff	0.334	2	730	1,364		MR 60000 604.00 NM	AM 400 40 10-101 FM	WATERSHED#10
15	SCS Runoff	0.310	2	724	1,063	que taja alem dila dila		***	WATERSHED#11
16	Combine	14.40	2	734	69,718	5, 6, 7,		400 MA 100-407 pm-mm	WATER TO BROOK 1
17	Combine	4.206	2	724	15,074	8, 9, 10, 11, 12, 13,		****	WATER TO BROOK 2
18	Combine	16.49	2	734	84,792	14, 15, 16, 17		100 Mer (der 100 mm)	DP#2 - TOTAL WATER TO CULVER
19	Combine	3.557	2	728	13,665	1, 2, 3,		NO 80-50-40-10-	DP#1 - TO PARK ROAD
316	62 - EXISTIN	G CONDI	TIONS.g	wqı	Return	Period: 10	Year	Tuesday,	10 / 13 / 2015

Hydrograph Summary Report Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	0.828	2	728	3,175	200000			TO EX. CATCHBASIN3	
2	SCS Runoff	1.432	2	728	5,490				TO EX. CATHBASIN2	
3	SCS Runoff	2.291	2	728	8,781	the street and street			TO EX. CATCHBASIN1	
4	SCS Runoff	0.234	2	728	903			40 , (00 mm to to to to	DP#3 - PROSPECT AVE CATCHBA	
5	SCS Runoff	4.076	2	728	15,624			quintiples blocks see	WATERSHED#1	
6	SCS Runoff	2.346	2	738	11,577		No see on sector see		WATERSHED#2	
7	SCS Runoff	4.413	2	736	21,072		*****		WATERSHED#3	
8	SCS Runoff	4.807	2	734	21,233				WATERSHED#4	
9	SCS Runoff	2.679	2	738	13,318				WATERSHED#5	
10	SCS Runoff	1.625	2	738	8,176	air woman da die die	Market and Aller Annual		WATERSHED#6	
11	SCS Runoff	0.571	2	724	1,970		program on second		WATERSHED#7	
12	SCS Runoff	0.884	2	726	3,061				WATERSHED#8	
13	SCS Runoff	2.907	2	724	10,029				WATERSHED#9	
14	SCS Runoff	0.470	2	730	1,867				WATERSHED#10	
15	SCS Runoff	0.363	2	724	1,254				WATERSHED#11	
16	Combine	18.98	2	734	91,000	5, 6, 7,			WATER TO BROOK 1	
17	Combine	5.043	2	724	18,180	8, 9, 10, 11, 12, 13,			WATER TO BROOK 2	
18	Combine	21.51	2	734	109,180	14, 15, 16, 17			DP#2 - TOTAL WATER TO CULVER	
19	Combine	4.551	2	728	17,446	1, 2, 3,			DP#1 - TO PARK ROAD	
316	3162 - EXISTING CONDITIONS.gpw					Return Period: 25 Year			Tuesday, 10 / 13 / 2015	

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	0.990	2	728	3,796				TO EX. CATCHBASIN3	
2	SCS Runoff	1.698	2	728	6,526	andy constraints after sight			TO EX. CATHBASIN2	
3	SCS Runoff	2.748	2	728	10,533				TO EX. CATCHBASIN1	
4	SCS Runoff	0.286	2	728	1,097				DP#3 - PROSPECT AVE CATCHBA	
5	SCS Runoff	4.890	2	728	18,741				WATERSHED#1	
6	SCS Runoff	2.848	2	738	14,021			Maritin say Property and	WATERSHED#2	
7	SCS Runoff	5.432	2	736	25,784				WATERSHED#3	
8	SCS Runoff	5.759	2	734	25,469			A-8-11-16	WATERSHED#4	
9	SCS Runoff	3.298	2	738	16,296				WATERSHED#5	
10	SCS Runoff	2.032	2	738	10,115		4-10-00 M	AND NOT THE OWN AND	WATERSHED#6	
11	SCS Runoff	0.644	2	724	2,232				WATERSHED#7	
12	SCS Runoff	1.030	2	726	3,587				WATERSHED#8	
13	SCS Runoff	3.280	2	724	11,361				WATERSHED#9	
14	SCS Runoff	0.596	2	730	2,338				WATERSHED#10	
15	SCS Runoff	0.410	2	724	1,420				WATERSHED#11	
16	Combine	23.11	2	734	110,427	5, 6, 7,			WATER TO BROOK 1	
17	Combine	5.783	2	724	20,938	8, 9, 10, 11, 12, 13,	******		WATER TO BROOK 2	
18	Combine	26.04	2	734	131,365	14, 15, 16, 17	****		DP#2 - TOTAL WATER TO CULVER	
19	Combine	5.436	2	728	20,856	1, 2, 3,	W 70 W 10 W		DP#1 - TO PARK ROAD	
316	3162 - EXISTING CONDITIONS.gpw					Return Period: 50 Year			Tuesday, 10 / 13 / 2015	

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.153	2	728	4,431		merima mercer fericam		TO EX. CATCHBASIN3
2	SCS Runoff	1.966	2	728	7,580		*****	*****	TO EX. CATHBASIN2
3	SCS Runoff	3.212	2	728	12,325				TO EX. CATCHBASIN1
4	SCS Runoff	0.338	2	728	1,297	******			DP#3 - PROSPECT AVE CATCHBA
5	SCS Runoff	5.714	2	728	21,930				WATERSHED#1
6	SCS Runoff	3.359	2	738	16,535				WATERSHED#2
7	SCS Runoff	6.477	2	736	30,659	******			WATERSHED#3
8	SCS Runoff	6.729	2	732	29,802				WATERSHED#4
9	SCS Runoff	3.933	2	738	19,377				WATERSHED#5
10	SCS Runoff	2.453	2	738	12,135				WATERSHED#6
11	SCS Runoff	0.718	2	724	2,494				WATERSHED#7
12	SCS Runoff	1.175	2	726	4,118				WATERSHED#8
13	SCS Runoff	3.653	2	724	12,694			ggeggy piecele for the	WATERSHED#9
14	SCS Runoff	0.728	2	730	2,831			## TO THE TO	WATERSHED#10
15	SCS Runoff	0.457	2	724	1,587		and control and some first		WATERSHED#11
16	Combine	27.34	2	734	130,438	5, 6, 7,			WATER TO BROOK 1
17	Combine	6.528	2	724	23,724	8, 9, 10, 11, 12, 13,			WATER TO BROOK 2
18	Combine	30.66	2	732	154,162	14, 15, 16, 17	March de Gale de Gale Gale		DP#2 - TOTAL WATER TO CULVER
19	Combine	6.330	2	728	24,337	1, 2, 3,			DP#1 - TO PARK ROAD
3162 - EXISTING CONDITIONS.gpw					Return F	Period: 100	Year	Tuesday,	10 / 13 / 2015

APPENDIX B
Watershed Computations
(Post-Development Conditions)

Hydrograph Return Period Recap Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd.	Hydrograph	Inflow				Hydrograph					
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-уг	50-yr	100-yr	Description
1	SCS Runoff			0.070	w	0.098	0.116	0.140	0.160	0.181	CB-1
2	SCS Runoff			0.101		0.137	0.161	0.193	0.220	0.248	CB-2
3	SCS Runoff			2.577		3.356	3.872	4.559	5.157	5.754	SOUTH PARKING AREA
4	SCS Runoff		SEN STR. SEN SEN SEN SEN SEN	1.177		1.782	2.199	2.764	3.264	3.765	W.A.# 3
5	SCS Runoff	Ann-rescribe Alle Alles Alles		0.614		1.022	1.313	1.724	2.095	2.473	W.A.# 4
6	SCS Runoff			0.226		0.297	0.344	0.406	0.460	0.514	CB-3
7	SCS Runoff			0.169		0.237	0.282	0.343	0.396	0.448	CB-4
8	SCS Runoff	400 Mile (II) (IV) (IV)		1.076		1.423	1.653	1.957	2.222	2.487	CB-5
9	SCS Runoff			0.599		0.805	0.942	1.124	1.282	1.440	CB-6
10	SCS Runoff			0.386		0.511	0.593	0.703	0.798	0.893	CB-7
11	SCS Runoff	*****		0.180		0.231	0.266	0.311	0.351	0.391	CB-8
12	SCS Runoff			0.295	der tur san ser der ser der	0.394	0.459	0.545	0.620	0.695	CB-9
13	SCS Runoff			0.277	ale or see the law to the	0.376	0.442	0.529	0.605	0.681	TD-2
14	SCS Runoff			0.154	****	0.227	0.277	0.345	0.404	0.464	Sisters Courtyard
15	SCS Runoff			0.151		0.205	0.241	0.289	0.330	0.371	W.A.# 5
16	SCS Runoff			0.293	ado districto din Albretto Na	0.472	0.600	0.778	0.937	1.099	W.A.# 6
17	SCS Runoff			0.546	4-7-11-11-11-11	0.858	1.079	1.381	1.650	1.922	W.A.# 1
18	SCS Runoff			0.566	40-70-40-40-10-10-10-10-10-10-10-10-10-10-10-10-10	0.743	0.860	1.015	1.150	1.285	CB-10
19	SCS Runoff			0.497	*****	0.657	0.763	0.903	1.026	1.148	CB-11
20	SCS Runoff			0.564	*****	0.751	0.876	1.041	1.184	1.327	CB-12
21	SCS Runoff			0.212	*******	0.296	0.353	0.429	0.494	0.560	CB-13
22	SCS Runoff			0.226		0.297	0.344	0.406	0.460	0.514	TD-3
23	SCS Runoff			0.594	errant die tei, die est ets	0.823	0.976	1.180	1.357	1.533	TD-1
24	SCS Runoff			3.364		4.353	5.010	5.884	6.647	7.409	W.A.# 11
25	SCS Runoff			0.044		0.068	0.084	0.106	0.126	0.146	W.A.# 7
26	SCS Runoff	da da de de 190 an		0.075		0.112	0.137	0.172	0.202	0.233	W.A.# 8
27	SCS Runoff			0.809		1.041	1.196	1.402	1.581	1.761	GARAGE ROOF DRAIN-2
28	SCS Runoff			1.018		1.311	1.506	1.765	1.992	2.218	GARAGE ROOF DRAIN-1
29	SCS Runoff	44 100 100 100 100		0.809		1.041	1.196	1.402	1.581	1.761	GARAGE ROOF DRAIN-3
30	SCS Runoff			1.557		2.005	2.303	2.699	3.046	3.392	GARAGE ROOF DRAIN-4
31	SCS Runoff			0.485		0.745	0.926	1.171	1.389	1.608	W.A.# 10
32	SCS Runoff			0.049		0.076	0.096	0.123	0.147	0.171	YD-1
33	SCS Runoff			0.077		0.128	0.164	0.215	0.262	0.309	YD-2
34	SCS Runoff		****	0.065		0.105	0.133	0.173	0.208	0.244	YD-3
	1			J			1	1	1		

Proj. file: 3162 - Poposed Conditions.gpw

Tuesday, 10 / 13 / 2015

Hydrograph Return Period Recap Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

	,	Inflow hyd(s)				Hydrograph					
No.			1-yr	2-yr	3-уг	5-yr	10-yr	25-yr	50-yr	100-yr	Description
35	SCS Runoff			0.097		0.153	0.192	0.245	0.293	0.342	YD-4
36	SCS Runoff		just made offer also belon differ.	0.030		0.039	0.044	0.052	0.059	0.065	W.A.# 9
37	SCS Runoff			2.625		3.675	4.378	5.314	6.131	6.944	DETENTION POND AREA
38	SCS Runoff			1.906		3.227	4.174	5.512	6.728	7.970	W.A.# 2
39	Combine	1, 11, 12,		4.911		6.521	7.601	9.045	10.31	11.58	To S. Pond (A)
40	Combine	17, 18, 24, 6, 7, 8,		2.724		3.636	4.241	5.044	5.742	6.439	S. POND COMBINE (B)
41	Combine	9, 10, 13, 2, 3, 27,		6.378		8.673	10.21	12.26	14.06	15.86	To S. Pond (C)
42	Combine	31, 32, 37, 14, 19, 20,		2.185		2.973	3.498	4.197	4.806	5.414	S. POND COMBINE (D)
43	Combine	21, 22, 23, 28, 29, 30,		3.571		4.669	5.405	6.391	7.255	8.121	S. POND COMBINE (E)
44	Combine	33, 34, 35, 39, 40, 41,		19.77		26.47	30.96	36.94	42.18	47.41	To S. Pond
45	Reservoir	42, 43 44		3.996		5.400	6.170	7.095	7.829	8.873	S. Pond Overflow
46	Combine	15, 16, 25,		0.448	da mada ya bis maja	0.692	0.863	1.098	1.307	1.519	DP#1 - To Park Road
47	Combine	4, 5, 38,		6.758	MEET Sign HOSE HOW STON JUST	10.46	12.75	15.83	18.56	21.24	DP#2 - To Culvert
48	Combine	45, 26, 36,		0.097	and the same files with the	0.140	0.169	0.209	0.245	0.280	DP#3 - To Prospect

Proj. file: 3162 - Poposed Conditions.gpw

Tuesday, 10 / 13 / 2015

Hydrograph Summary Report Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

					Trydranow		xterision for Autoo.	AD® CIVII 3D® 2013 by Autodesk, Inc. V10			
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	SCS Runoff	0.098	2	724	298	too world too shirely	No air 101 No 100	and has place and sign	CB-1		
2	SCS Runoff	0.137	2	724	424				CB-2		
3	SCS Runoff	3.356	2	724	11,022				SOUTH PARKING AREA		
4	SCS Runoff	1.782	2	726	6,085				W.A.# 3		
5	SCS Runoff	1.022	2	730	4,001				W.A.# 4		
6	SCS Runoff	0.297	2	724	961				CB-3		
7	SCS Runoff	0.237	2	726	819				CB-4		
8	SCS Runoff	1.423	2	724	4,542				CB-5		
9	SCS Runoff	0.805	2	724	2,516				CB-6		
10	SCS Runoff	0.511	2	724	1,631				CB-7		
11	SCS Runoff	0.231	2	724	789				CB-8		
12	SCS Runoff	0.394	2	724	1,242			*****	CB-9		
13	SCS Runoff	0.376	2	724	1,165				TD-2		
14	SCS Runoff	0.227	2	726	775		Add not made described and		Sisters Courtyard		
15	SCS Runoff	0.205	2	724	636				W.A.# 5		
16	SCS Runoff	0.472	2	730	1,835				W.A.# 6		
17	SCS Runoff	0.858	2	728	3,313			****	W.A.# 1		
18	SCS Runoff	0.743	2	724	2,402				CB-10		
19	SCS Runoff	0.657	2	724	2,096		Acres landres as	400 TO SEE TO SEE	CB-11		
20	SCS Runoff	0.751	2	724	2,371			and deliveran store store	CB-12		
21	SCS Runoff	0.296	2	726	1,024				CB-13		
22	SCS Runoff	0.297	2	724	961			***	TD-3		
23	SCS Runoff	0.823	2	726	2,859				TD-1		
24	SCS Runoff	4.353	2	724	14,552				W.A.# 11		
25	SCS Runoff	0.068	2	726	231				W.A.# 7		
26	SCS Runoff	0.112	2	728	428				W.A.# 8		
27	SCS Runoff	1.041	2	724	3,551				GARAGE ROOF DRAIN-2		
28	SCS Runoff	1.311	2	724	4,472		10.11 de 10.40 m		GARAGE ROOF DRAIN-1		
29	SCS Runoff	1.041	2	724	3,551				GARAGE ROOF DRAIN-3		
30	SCS Runoff	2.005	2	724	6,839				GARAGE ROOF DRAIN-4		
31	SCS Runoff	0.745	2	728	2,863		****		W.A.# 10		
32	SCS Runoff	0.076	2	728	295	service his sectorous	Alle decide the new way		YD-1		
33	SCS Runoff	0.128	2	730	500		Mor file date don use sub	nation for the last to the	YD-2		
34	SCS Runoff	0.105	2	730	408				YD-3		
316	3162 - Poposed Conditions.gpw					Period: 5 Y	ear	Tuesday, 1	Tuesday, 10 / 13 / 2015		

Hydrograph Summary Report Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
35	SCS Runoff	0.153	2	728	589		do to the life life		YD-4
36	SCS Runoff	0.039	2	724	132				W.A.# 9
37	SCS Runoff	3.675	2	726	12,702				DETENTION POND AREA
38	SCS Runoff	3.227	2	730	12,695				W.A.# 2
39	Combine	6.521	2	724	22,596	1, 11, 12,			To S. Pond (A)
40	Combine	3.636	2	724	11,634	17, 18, 24, 6, 7, 8,			S. POND COMBINE (B)
41	Combine	8.673	2	724	30,857	9, 10, 13, 2, 3, 27,			To S. Pond (C)
42	Combine	2.973	2	724	10,087	31, 32, 37, 14, 19, 20,			S. POND COMBINE (D)
43	Combine	4.669	2	724	16,359	21, 22, 23, 28, 29, 30,		+#	S. POND COMBINE (E)
44	Combine	26.47	2	724	91,534	33, 34, 35, 39, 40, 41,			To S. Pond
45	Reservoir	5.400	2	750	91,514	42, 43 44	45.17	41,148	S. Pond Overflow
46	Combine	0.692	2	726	2,702	15, 16, 25,			DP#1 - To Park Road
47	Combine	10.46	2	730	114,296	4, 5, 38,			DP#2 - To Culvert
48	Combine	0.140	2	726	560	45, 26, 36,			DP#3 - To Prospect
246	62 - Poposed	Condition			Datum I	Period: 5 Ye		Tuesday	10 / 13 / 2015

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 1

CB-1

Hydrograph type = SCS Runoff Peak discharge = 0.098 cfsStorm frequency = 5 yrsTime to peak = 724 min Hyd. volume Time interval = 2 min = 298 cuft = 89* = 0.030 acCurve number Drainage area Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method $= 6.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $+(0.010 \times 71) + (0.020 \times 98)] / 0.030$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 2

CB-2

Hydrograph type = SCS Runoff Peak discharge = 0.137 cfsStorm frequency Time to peak = 724 min = 5 yrsTime interval = 2 min Hyd. volume = 424 cuft = 91* = 0.040 acCurve number Drainage area Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 6.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III Shape factor = 484 Storm duration = 24 hrs

^{*} Composite (Area/CN) = [(0.010 x 71) + (0.030 x 98)] / 0.040

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 3

SOUTH PARKING AREA

Hydrograph type = SCS Runoff Peak discharge = 3.356 cfsStorm frequency Time to peak = 724 min = 5 yrsTime interval = 2 min Hyd. volume = 11,022 cuft= 96* = 0.890 acCurve number Drainage area Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type III Shape factor = 484 Storm duration = 24 hrs

^{*} Composite (Area/CN) = $[(0.010 \times 74) + (0.070 \times 71) + (0.810 \times 98)] / 0.890$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 4

W.A.#3

Hydrograph type = SCS Runoff Peak discharge = 1.782 cfsStorm frequency = 5 yrsTime to peak = 726 min Time interval = 2 min Hyd. volume = 6.085 cuftDrainage area = 0.760 acCurve number = 81* Basin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) $= 8.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III Shape factor = 484 Storm duration = 24 hrs

^{*} Composite (Area/CN) = [(0.520 x 74) + (0.020 x 71) + (0.220 x 98)] / 0.760

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 5

W.A.#4

Hydrograph type = SCS Runoff Peak discharge = 1.022 cfsStorm frequency = 5 yrsTime to peak = 730 min Time interval = 2 min Hyd. volume = 4,001 cuft= 74* Drainage area = 0.640 acCurve number Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 10.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.610 x 74) + (0.030 x 80)] / 0.640

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 6

CB-3

Hydrograph type = SCS Runoff Peak discharge = 0.297 cfsStorm frequency = 5 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 961 cuft Curve number = 95* Drainage area = 0.080 acBasin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method $= 6.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type III Storm duration Shape factor = 484 = 24 hrs

^{*} Composite (Area/CN) = $[(0.010 \times 71) + (0.070 \times 98)] / 0.080$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 7

CB-4

Hydrograph type = SCS Runoff Peak discharge = 0.237 cfsStorm frequency Time to peak = 726 min = 5 yrsTime interval = 2 min Hyd. volume = 819 cuft Drainage area = 0.080 acCurve number = 88* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type III Shape factor = 484 Storm duration = 24 hrs

^{*} Composite (Area/CN) = $[(0.030 \times 71) + (0.050 \times 98)] / 0.080$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 8

CB-5

Hydrograph type = SCS Runoff Peak discharge = 1.423 cfs= 724 min Storm frequency = 5 yrsTime to peak Time interval = 2 min Hyd. volume = 4,542 cuft= 94* Drainage area = 0.390 acCurve number Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = User $= 6.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.050 \times 74) + (0.010 \times 71) + (0.330 \times 98)] / 0.390$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 9

CB-6

Hydrograph type = SCS Runoff Peak discharge = 0.805 cfsStorm frequency = 5 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 2.516 cuftDrainage area = 0.230 acCurve number = 92* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 6.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.050 x 71) + (0.180 x 98)] / 0.230

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 10

CB-7

= SCS Runoff Peak discharge = 0.511 cfsHydrograph type Storm frequency Time to peak = 724 min = 5 yrsTime interval = 2 min Hyd. volume = 1,631 cuft Curve number Drainage area = 0.140 ac= 94* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.020 \times 71) + (0.120 \times 98)] / 0.140$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 11

CB-8

Peak discharge = 0.231 cfsHydrograph type = SCS Runoff Storm frequency = 5 yrsTime to peak = 724 min Hyd. volume = 789 cuft Time interval $= 2 \min$ Curve number = 98* Drainage area = 0.060 ac= 0.0 %Hydraulic length = 0 ftBasin Slope Tc method = User Time of conc. (Tc) $= 6.00 \, \text{min}$ Distribution = Type III Total precip. = 4.10 inShape factor = 484 Storm duration = 24 hrs

^{*} Composite (Area/CN) = + (0.060 x 98)] / 0.060

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 12

CB-9

= SCS Runoff Peak discharge = 0.394 cfsHydrograph type Storm frequency Time to peak = 724 min = 5 yrsTime interval = 2 min Hyd. volume = 1,242 cuftCurve number Drainage area = 0.110 ac= 93* = 0.0 %Hydraulic length = 0 ftBasin Slope Tc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User = 4.10 inDistribution = Type III Total precip. Shape factor = 484 Storm duration = 24 hrs

^{*} Composite (Area/CN) = [(0.020 x 71) + (0.090 x 98)] / 0.110

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 13

TD-2

Hydrograph type = SCS Runoff Peak discharge = 0.376 cfsTime to peak Storm frequency = 5 yrs= 724 min Hyd. volume = 1.165 cuft Time interval = 2 min Curve number = 91* = 0.110 acDrainage area Hydraulic length = 0 ft= 0.0 %Basin Slope Time of conc. (Tc) $= 6.00 \, \text{min}$ Tc method = User = Type III Distribution Total precip. = 4.10 in= 484 = 24 hrs Shape factor Storm duration

^{*} Composite (Area/CN) = $[(0.030 \times 71) + (0.080 \times 98)] / 0.110$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 14

Sisters Courtyard

Hydrograph type = SCS Runoff Peak discharge = 0.227 cfsTime to peak = 726 min Storm frequency = 5 yrsTime interval = 2 min Hyd. volume = 775 cuft Curve number = 83* Drainage area = 0.090 acBasin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 8.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = [(0.050 x 71) + (0.040 x 98)] / 0.090

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 15

W.A.#5

Hydrograph type = SCS Runoff Peak discharge = 0.205 cfsStorm frequency = 5 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 636 cuft Drainage area = 0.060 acCurve number = 91* Basin Slope = 0.0 % Hydraulic length = 0 ft= User Tc method Time of conc. (Tc) $= 6.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.010 \times 74) + (0.010 \times 80) + (0.040 \times 98)] / 0.060$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 16

W.A.#6

Hydrograph type = SCS Runoff Peak discharge = 0.472 cfsStorm frequency = 5 yrsTime to peak = 730 min Time interval = 2 min Hyd. volume = 1,835 cuft Curve number Drainage area = 0.270 ac= 76* = 0.0 %Hydraulic length = 0 ftBasin Slope Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. Distribution = Type III = 4.10 inStorm duration = 484 = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.150 \times 71) + (0.110 \times 80) + (0.010 \times 98)] / 0.270$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 17

W.A.# 1

Hydrograph type = SCS Runoff Peak discharge = 0.858 cfsStorm frequency Time to peak = 728 min = 5 yrsTime interval = 2 min Hyd. volume = 3,313 cuft Curve number = 78* Drainage area = 0.450 acBasin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) $= 10.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.340 \times 71) + (0.110 \times 98)] / 0.450$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 18

CB-10

Hydrograph type = SCS Runoff Peak discharge = 0.743 cfsStorm frequency = 5 yrsTime to peak = 724 min Hyd. volume Time interval = 2 min = 2.402 cuftCurve number = 95* = 0.200 acDrainage area Hydraulic length = 0 ftBasin Slope = 0.0 %Time of conc. (Tc) $= 6.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.020 \times 71) + (0.180 \times 98)] / 0.200$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 19

CB-11

Hydrograph type = SCS Runoff Peak discharge = 0.657 cfsStorm frequency = 5 yrsTime to peak = 724 min Hyd. volume = 2.096 cuft Time interval = 2 min Curve number = 94* = 0.180 acDrainage area Hydraulic length = 0 ftBasin Slope = 0.0 %Time of conc. (Tc) $= 6.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = [(0.030 x 71) + (0.150 x 98)] / 0.180

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 20

CB-12

Hydrograph type = SCS Runoff Peak discharge = 0.751 cfsStorm frequency = 5 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 2,371 cuft= 93* Drainage area = 0.210 acCurve number Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = User $= 6.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.040 \times 71) + (0.170 \times 98)] / 0.210$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 21

CB-13

Hydrograph type = SCS Runoff Peak discharge = 0.296 cfsStorm frequency = 5 yrsTime to peak = 726 min Time interval = 2 min Hyd. volume = 1.024 cuftDrainage area = 0.100 acCurve number = 88* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type III Storm duration Shape factor = 484 = 24 hrs

^{*} Composite (Area/CN) = $[(0.030 \times 71) + (0.010 \times 80) + (0.060 \times 98)] / 0.100$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 22

TD-3

Hydrograph type = SCS Runoff Peak discharge = 0.297 cfs= 5 yrsStorm frequency Time to peak = 724 min Time interval = 2 min Hyd. volume = 961 cuft Drainage area = 0.080 acCurve number = 95* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III Storm duration Shape factor = 484 = 24 hrs

^{*} Composite (Area/CN) = [(0.010 x 71) + (0.070 x 98)] / 0.080

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 23

TD-1

= SCS Runoff Peak discharge = 0.823 cfsHydrograph type Storm frequency = 5 yrsTime to peak = 726 min Time interval = 2 min Hyd. volume = 2.859 cuftDrainage area = 0.270 acCurve number = 89* = 0.0 %Hydraulic length = 0 ftBasin Slope Time of conc. (Tc) $= 7.00 \, \text{min}$ Tc method = User = 4.10 inDistribution = Type III Total precip. = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.060 \times 71) + (0.040 \times 80) + (0.170 \times 98)] / 0.270$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 24

W.A.# 11

= 4.353 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency Time to peak = 724 min = 5 yrs= 2 min Hyd. volume = 14,552 cuft Time interval Drainage area = 1.140 acCurve number = 97* = 0.0 % Hydraulic length Basin Slope = 0 ftTc method Time of conc. (Tc) = User $= 6.00 \, \text{min}$ Distribution = Type III Total precip. = 4.10 in= 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.040 \times 71) + (1.100 \times 98)] / 1.140$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 25

W.A.#7

Hydrograph type = SCS Runoff Peak discharge = 0.068 cfsTime to peak = 726 min Storm frequency = 5 yrsTime interval = 2 min Hyd. volume = 231 cuft Curve number = 80* Drainage area = 0.030 acBasin Slope = 0.0 % Hydraulic length = 0 ftTime of conc. (Tc) $= 8.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = [(0.030 x 80)] / 0.030

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 26

W.A.#8

Hydrograph type = SCS Runoff Peak discharge = 0.112 cfsStorm frequency Time to peak = 728 min = 5 yrsTime interval = 2 min Hyd. volume = 428 cuft Curve number = 82* Drainage area = 0.050 acBasin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 10.00 \, \text{min}$ Tc method = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.010 \times 71) + (0.030 \times 80) + (0.010 \times 98)] / 0.050$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 27

GARAGE ROOF DRAIN-2

Hydrograph type = SCS Runoff Peak discharge = 1.041 cfsStorm frequency Time to peak = 724 min = 5 yrsTime interval = 2 min Hyd. volume = 3,551 cuft= 0.270 acCurve number = 98* Drainage area Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = [(1.390 x 98)] / 0.270

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 28

GARAGE ROOF DRAIN-1

Hydrograph type = SCS Runoff Peak discharge = 1.311 cfsStorm frequency Time to peak = 724 min = 5 yrs= 2 min Hyd. volume = 4,472 cuftTime interval = 0.340 acCurve number = 98 Drainage area = 0.0 %Hydraulic length = 0 ftBasin Slope Time of conc. (Tc) Tc method = User $= 6.00 \, \text{min}$ Distribution = 4.10 in= Type III Total precip. = 484 Storm duration = 24 hrs Shape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 29

GARAGE ROOF DRAIN-3

Hydrograph type = SCS Runoff Peak discharge = 1.041 cfsStorm frequency Time to peak = 724 min = 5 yrs= 2 min Hyd. volume = 3.551 cuftTime interval Drainage area = 0.270 acCurve number = 98 = 0.0 %Hydraulic length Basin Slope = 0 ftTime of conc. (Tc) Tc method = User $= 6.00 \, \text{min}$ = 4.10 inDistribution Total precip. = Type III = 484 Storm duration = 24 hrs Shape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 30

GARAGE ROOF DRAIN-4

= 2.005 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency Time to peak = 724 min = 5 yrsHyd. volume = 6.839 cuft Time interval = 2 min = 0.520 acCurve number = 98 Drainage area Hydraulic length = 0 ftBasin Slope = 0.0 %Time of conc. (Tc) $= 6.00 \, \text{min}$ Tc method = User Distribution = Type III = 4.10 inTotal precip. = 484 Storm duration = 24 hrs Shape factor

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 31

W.A.# 10

Hydrograph type = SCS Runoff Peak discharge = 0.745 cfsStorm frequency = 5 yrsTime to peak = 728 min Time interval Hyd. volume = 2.863 cuft= 2 min Curve number = 80* = 0.360 acDrainage area = 0.0 %Hydraulic length = 0 ftBasin Slope Tc method Time of conc. (Tc) $= 10.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type III = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = [(0.240 x 71) + (0.120 x 98)] / 0.360

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 32

YD-1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.076 cfs
Storm frequency	= 5 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 295 cuft
Drainage area	= 0.040 ac	Curve number	= 78*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 4.10 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

^{*} Composite (Area/CN) = $[(0.030 \times 71) + (0.010 \times 98)] / 0.040$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 33

YD-2

Hydrograph type = SCS Runoff Peak discharge = 0.128 cfsStorm frequency = 5 yrsTime to peak = 730 min Time interval = 2 min Hyd. volume = 500 cuft = 74* = 0.080 acCurve number Drainage area Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = User $= 10.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.070 \times 71) + (0.010 \times 98)] / 0.080$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 34

YD-3

Hydrograph type = SCS Runoff Peak discharge = 0.105 cfsStorm frequency Time to peak = 730 min = 5 yrsTime interval = 2 min Hyd. volume = 408 cuft Drainage area = 0.060 acCurve number = 76* Hydraulic length Basin Slope = 0.0 %= 0 ftTime of conc. (Tc) $= 10.00 \, \text{min}$ Tc method = User Distribution = Type III Total precip. = 4.10 in= 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = $[(0.050 \times 71) + (0.010 \times 98)] / 0.060$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 35

YD-4

Hydrograph type = SCS Runoff Peak discharge = 0.153 cfsStorm frequency = 5 yrsTime to peak = 728 min Time interval = 2 min Hyd. volume = 589 cuft Curve number = 78* Drainage area = 0.080 acBasin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = User $= 10.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III = 484 Storm duration Shape factor = 24 hrs

^{*} Composite (Area/CN) = [(0.060 x 71) + (0.020 x 98)] / 0.080

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 36

W.A.# 9

Hydrograph type = SCS Runoff Peak discharge = 0.039 cfsStorm frequency = 5 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 132 cuft = 98* Drainage area = 0.010 acCurve number Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 6.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.010 x 98)] / 0.010

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 37

DETENTION POND AREA

= 3.675 cfsHydrograph type = SCS Runoff Peak discharge Time to peak = 726 min Storm frequency = 5 yrsHyd. volume = 12,702 cuftTime interval = 2 min = 1.240 acCurve number = 88* Drainage area Hydraulic length = 0 ft= 0.0 %Basin Slope Time of conc. (Tc) $= 7.00 \, \text{min}$ Tc method = User Distribution = Type III = 4.10 inTotal precip. = 484 Storm duration = 24 hrs Shape factor

^{*} Composite (Area/CN) = [(0.330 x 74) + (0.160 x 71) + (0.750 x 98)] / 1.240

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 38

W.A.# 2

Hydrograph type = SCS Runoff Peak discharge = 3.227 cfsStorm frequency = 5 yrsTime to peak = 730 min Time interval = 2 min Hyd. volume = 12,695 cuftDrainage area = 2.120 acCurve number = 73* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 10.00 \, \text{min}$ Total precip. = 4.10 inDistribution = Type III Storm duration Shape factor = 484 = 24 hrs

^{*} Composite (Area/CN) = $[(1.670 \times 74) + (0.270 \times 71) + (0.180 \times 61)] / 2.120$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 39

To S. Pond (A)

Hydrograph type Storm frequency Time interval

Inflow hyds.

= Combine

= 5 yrs = 2 min

= 1, 11, 12, 17, 18, 24

Peak discharge

= 6.521 cfs

Time to peak Hyd. volume

= 724 min = 22,596 cuft

Contrib. drain. area = 1.990 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 40

S. POND COMBINE (B)

Hydrograph type Storm frequency = Combine

Peak discharge Time to peak = 3.636 cfs

Time interval

= 5 yrs = 2 min

Time to peak Hyd. volume

= 724 min = 11,634 cuft

Inflow hyds.

= 6, 7, 8, 9, 10, 13

Contrib. drain. area

= 1.030 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 41

To S. Pond (C)

Hydrograph type Storm frequency Time interval

Inflow hyds.

= Combine

= 5 yrs = 2 min

= 2, 3, 27, 31, 32, 37

Peak discharge Time to peak = 8.673 cfs = 724 min

Figure to peak = iHyd. volume = 3

= 30,857 cuft

Contrib. drain. area = 2.840 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 42

S. POND COMBINE (D)

Hydrograph type = Combine Storm frequency = 5 yrs Time interval = 2 min

Inflow hyds. = 14, 19, 20, 21, 22, 23

Peak discharge = 2.973 cfs
Time to peak = 724 min
Hyd. volume = 10,087 cuft
Contrib. drain. area = 0.930 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 43

S. POND COMBINE (E)

Hydrograph type Storm frequency Time interval = Combine = 5 yrs

= 2 min

Inflow hyds. = 28, 29, 30, 33, 34, 35

Peak discharge = 4.669 cfs Time to peak = 724 min Hyd. volume = 16,359 cuft

Contrib. drain. area = 1.350 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 44

To S. Pond

Inflow hyds.

Hydrograph type Storm frequency Time interval = Combine = 5 yrs

= 5 yrs = 2 min

= 39, 40, 41, 42, 43

Peak discharge Time to peak = 26.47 cfs = 724 min

Hyd. volume = 91,534 cuft Contrib. drain. area = 0.000 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 45

S. Pond Overflow

Hydrograph type = Reservoir
Storm frequency = 5 yrs
Time interval = 2 min
Inflow hyd. No. = 44 - To S. Pond
Reservoir name = South Pond

Peak discharge = 5.400 cfs
Time to peak = 750 min
Hyd. volume = 91,514 cuft
Max. Elevation = 45.17 ft

Max. Storage = 41,148 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Pond No. 1 - South Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 43.50 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	43.50	17,651	0	0
3.50	47.00	32,417	86,311	86,311
4.00	47.50	34,583	16,745	103,057

Culvert / Ori	fice Structu	res			Weir Structures					
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 24.00	17.00	Inactive	0.00	Crest Len (ft)	= 7.33	Inactive	0.00	0.00	
Span (in)	= 24.00	17.00	14.00	0.00	Crest El. (ft)	= 46.50	0.00	0.00	0.00	
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33	
Invert El. (ft)	= 43.50	43.50	45.00	0.00	Weir Type	= 1				
Length (ft)	= 41.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%)	= 0.60	0.00	0.00	n/a						
N-Value	= .013	.013	.013	n/a						
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (b)	y Wet area)			
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00				

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 46

DP#1 - To Park Road

Hydrograph type = Combine Storm frequency = 5 yrs Time interval = 2 min Inflow hyds. = 15, 16, 25 Peak discharge = 0.692 cfs
Time to peak = 726 min
Hyd. volume = 2,702 cuft
Contrib. drain. area = 0.360 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 47

DP#2 - To Culvert

Hydrograph type = Combine
Storm frequency = 5 yrs
Time interval = 2 min
Inflow hyds. = 4, 5, 38, 45

Peak discharge = 10.46 cfs
Time to peak = 730 min
Hyd. volume = 114,296 cuft
Contrib. drain. area = 3.520 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Tuesday, 10 / 13 / 2015

Hyd. No. 48

DP#3 - To Prospect

Hydrograph type = Combine
Storm frequency = 5 yrs
Time interval = 2 min
Inflow hyds. = 26, 36

Peak discharge = 0.140 cfs
Time to peak = 726 min
Hyd. volume = 560 cuft
Contrib. drain. area = 0.060 ac

Hydrograph Summary Report Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.116	2	724	356				CB-1
2	SCS Runoff	0.161	2	724	502		sea van een ditti lakk 19k.		CB-2
3	SCS Runoff	3.872	2	724	12,825	me no no nir un un	And the same plant plant gare		SOUTH PARKING AREA
4	SCS Runoff	2.199	2	726	7,509				W.A.# 3
5	SCS Runoff	1.313	2	728	5,097	we no the six too till			W.A.# 4
6	SCS Runoff	0.344	2	724	1,122	to an el to to di			CB-3
7	SCS Runoff	0.282	2	726	983	60-00 FF-07-07			CB-4
8	SCS Runoff	1.653	2	724	5,325	phodo yle dio per pp			CB-5
9	SCS Runoff	0.942	2	724	2,972	glority yap one species			CB-6
10	SCS Runoff	0.593	2	724	1,912				CB-7
11	SCS Runoff	0.266	2	724	911				CB-8
12	SCS Runoff	0.459	2	724	1,461				CB-9
13	SCS Runoff	0.442	2	724	1,382	Married to server	W-24-00 W-24-00	do no de mor-re	TD-2
14	SCS Runoff	0.277	2	726	949	Make Printed and Make Servi		m dr dr 40 %	Sisters Courtyard
15	SCS Runoff	0.241	2	724	754				W.A.# 5
16	SCS Runoff	0.600	2	728	2,315	dig day the day cal-an-		we are arrived the over	W.A.# 6
17	SCS Runoff	1.079	2	728	4,142			4.00000	W.A.# 1
18	SCS Runoff	0.860	2	724	2,806			who was after our laber day	CB-10
19	SCS Runoff	0.763	2	724	2,458				CB-11
20	SCS Runoff	0.876	2	724	2,790				CB-12
21	SCS Runoff	0.353	2	726	1,229	gia aga sap san ana sa			CB-13
22	SCS Runoff	0.344	2	724	1,122				TD-3
23	SCS Runoff	0.976	2	726	3,416	******			TD-1
24	SCS Runoff	5.010	2	724	16,869				W.A.# 11
25	SCS Runoff	0.084	2	726	287	and the last time the last			W.A.# 7
26	SCS Runoff	0.137	2	728	526		Service row oper rea		W.A.# 8
27	SCS Runoff	1.196	2	724	4,101				GARAGE ROOF DRAIN-2
28	SCS Runoff	1.506	2	724	5,165				GARAGE ROOF DRAIN-1
29	SCS Runoff	1.196	2	724	4,101		PR 50 VI ST 50 VI		GARAGE ROOF DRAIN-3
30	SCS Runoff	2.303	2	724	7,899				GARAGE ROOF DRAIN-4
31	SCS Runoff	0.926	2	728	3,548		~~~		W.A.# 10
32	SCS Runoff	0.096	2	728	368	was director one cond the			YD-1
33	SCS Runoff	0.164	2	728	637				YD-2
34	SCS Runoff	0.133	2	728	514				YD-3
316	3162 - Poposed Conditions.gpw					Period: 10	Year	Tuesday,	10 / 13 / 2015

Hydrograph Summary Report Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
35	SCS Runoff	0.192	2	728	736	we have to 10 time the	******		YD-4
36	SCS Runoff	0.044	2	724	152	*****			W.A.# 9
37	SCS Runoff	4.378	2	726	15,235				DETENTION POND AREA
38	SCS Runoff	4.174	2	730	16,251				W.A.# 2
39	Combine	7.601	2	724	26,546	1, 11, 12, 17, 18, 24,			To S. Pond (A)
40	Combine	4.241	2	724	13,696	6, 7, 8, 9, 10, 13,		******	S. POND COMBINE (B)
41	Combine	10.21	2	724	36,581	2, 3, 27, 31, 32, 37,		10 /00 to 10 to 100	To S. Pond (C)
42	Combine	3.498	2	724	11,963	14, 19, 20, 21, 22, 23,		7000	S. POND COMBINE (D)
43	Combine	5.405	2	724	19,053	28, 29, 30, 33, 34, 35,			S. POND COMBINE (E)
44	Combine	30.96	2	724	107,839	39, 40, 41, 42, 43			To S. Pond
45	Reservoir	6.170	2	750	107,819	44	45.45	48,138	S. Pond Overflow
46	Combine	0.863	2	726	3,356	15, 16, 25,			DP#1 - To Park Road
47	Combine	12.75	2	730	136,677	4, 5, 38, 45,			DP#2 - To Culvert
48	Combine	0.169	2	726	678	26, 36,			DP#3 - To Prospect
316	3162 - Poposed Conditions.gpw					Period: 10 Y	/ear	Tuesday, 1	0 / 13 / 2015

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

						Hydratiow	Hydrographs E	xtension for AutoC	AD® CIVII 3D® 2013 by Autodesk, Inc. V
lyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.140	2	724	434				CB-1
2	SCS Runoff	0.193	2	724	608	All dealth libraries the			CB-2
3	SCS Runoff	4.559	2	724	15,234	00 M 40 M 00 To	60 (50 M TO - 64 M)	No see sign distribut non	SOUTH PARKING AREA
4	SCS Runoff	2.764	2	726	9,466			***	W.A.# 3
5	SCS Runoff	1.724	2	728	6,634				W.A.# 4
6	SCS Runoff	0.406	2	724	1,338	***			CB-3
7	SCS Runoff	0.343	2	726	1,204				CB-4
8	SCS Runoff	1.957	2	724	6,373				CB-5
9	SCS Runoff	1.124	2	724	3,584				CB-6
10	SCS Runoff	0.703	2	724	2,288				CB-7
11	SCS Runoff	0.311	2	724	1,075				CB-8
12	SCS Runoff	0.545	2	724	1,756		80.00 St (00.00.00		CB-9
13	SCS Runoff	0.529	2	724	1,673		pa 40 40 40 40		TD-2
14	SCS Runoff	0.345	2	726	1,186		## 10 70 MM		Sisters Courtyard
15	SCS Runoff	0.289	2	724	912				W.A.# 5
16	SCS Runoff	0.778	2	728	2,985				W.A.#6
17	SCS Runoff	1.381	2	728	5,291				W.A.# 1
18	SCS Runoff	1.015	2	724	3,345				CB-10
19	SCS Runoff	0.903	2	724	2,941				CB-11
20	SCS Runoff	1.041	2	724	3,351				CB-12
21	SCS Runoff	0.429	2	726	1,505				CB-13
22	SCS Runoff	0.406	2	724	1,338			pa 100 100 100 100 100	TD-3
23	SCS Runoff	1.180	2	726	4,168				TD-1
24	SCS Runoff	5.884	2	724	19,962	just also sale sale sale sale			W.A.# 11
25	SCS Runoff	0.106	2	726	363		~~~~B		W.A.#7
26	SCS Runoff	0.172	2	728	661			gg, ya ah ga ka ka	W.A.#8
27	SCS Runoff	1.402	2	724	4,835			******	GARAGE ROOF DRAIN-2
28	SCS Runoff	1.765	2	724	6,089				GARAGE ROOF DRAIN-1
29	SCS Runoff	1.402	2	724	4,835		40 AN 30-10-10-10-10	gin sin and discognishin	GARAGE ROOF DRAIN-3
30	SCS Runoff	2.699	2	724	9,313				GARAGE ROOF DRAIN-4
31	SCS Runoff	1.171	2	728	4,492				W.A.# 10
32	SCS Runoff	0.123	2	728	470				YD-1
33	SCS Runoff	0.215	2	728	829				YD-2
34	SCS Runoff	0.173	2	728	663				YD-3
316	3162 - Poposed Conditions.gpw					Period: 25	Year	Tuesday,	10 / 13 / 2015

Hydrograph Summary Report Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

						,	.,		AD® CIVII 3D® 2013 by Autodesk, Inc. V10
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
35	SCS Runoff	0.245	2	728	941				YD-4
36	SCS Runoff	0.052	2	724	179				W.A.#9
37	SCS Runoff	5.314	2	726	18,661				DETENTION POND AREA
38	SCS Runoff	5.512	2	728	21,260				W.A.# 2
39	Combine	9.045	2	724	31,863	1, 11, 12, 17, 18, 24,			To S. Pond (A)
40	Combine	5.044	2	724	16,459	6, 7, 8, 9, 10, 13,			S. POND COMBINE (B)
41	Combine	12.26	2	724	44,301	2, 3, 27, 31, 32, 37,			To S. Pond (C)
42	Combine	4.197	2	724	14,489	14, 19, 20,		nga gilanana daga ngaranga	S. POND COMBINE (D)
43	Combine	6.391	2	724	22,670	21, 22, 23, 28, 29, 30,		de carden traj dejudio	S. POND COMBINE (E)
44	Combine	36.94	2	724	129,783	33, 34, 35, 39, 40, 41, 42, 43		solved for the Section	To S. Pond
45	Reservoir	7.095	2	752	129,764	44	45.84	57,566	S. Pond Overflow
46	Combine	1.098	2	726	4,260	15, 16, 25,	****		DP#1 - To Park Road
47	Combine	15.83	2	728	167,124	4, 5, 38,			DP#2 - To Culvert
48	Combine	0.209	2	726	840	45, 26, 36,		dia pirjunitanda saa	DP#3 - To Prospect
316	3162 - Poposed Conditions.gpw					Period: 25 \	l ⁄ear	Tuesday, 1	0 / 13 / 2015

Hydrograph Summary Report Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	SCS Runoff	0.160	2	724	503				CB-1		
2	SCS Runoff	0.220	2	724	701	*****		man man man man min man	CB-2		
3	SCS Runoff	5.157	2	724	17,345			w	SOUTH PARKING AREA		
4	SCS Runoff	3.264	2	726	11,219				W.A.# 3		
5	SCS Runoff	2.095	2	728	8,035				W.A.# 4		
6	SCS Runoff	0.460	2	724	1,527				CB-3		
7	SCS Runoff	0.396	2	726	1,399		ten ten der mit die		CB-4		
8	SCS Runoff	2.222	2	724	7,293		dia tia ke dil Milita		CB-5		
9	SCS Runoff	1.282	2	724	4,122		40. No 404 400 400	***	CB-6		
10	SCS Runoff	0.798	2	724	2,618		that tabushin sell size site.		CB-7		
11	SCS Runoff	0.351	2	724	1,217		acres de Store Se		CB-8		
12	SCS Runoff	0.620	2	724	2,014		Mr. and Art - Mr.		CB-9		
13	SCS Runoff	0.605	2	724	1,929		derette besete vitrath		TD-2		
14	SCS Runoff	0.404	2	726	1,397				Sisters Courtyard		
15	SCS Runoff	0.330	2	724	1,052				W.A.# 5		
16	SCS Runoff	0.937	2	728	3,591				W.A.# 6		
17	SCS Runoff	1.650	2	728	6,327				W.A.# 1		
18	SCS Runoff	1.150	2	724	3,818				CB-10		
19	SCS Runoff	1.026	2	724	3,366		***************************************		CB-11		
20	SCS Runoff	1.184	2	724	3,845				CB-12		
21	SCS Runoff	0.494	2	726	1,749		and an even and other olds		CB-13		
22	SCS Runoff	0.460	2	724	1,527		silve such "State Andre "100" Filod	*****	TD-3		
23	SCS Runoff	1.357	2	726	4,831				TD-1		
24	SCS Runoff	6.647	2	724	22,671		der van der var van des	yes dannin din Milledia	W.A.# 11		
25	SCS Runoff	0.126	2	726	431				W.A.# 7		
26	SCS Runoff	0.202	2	728	781				W.A.# 8		
27	SCS Runoff	1.581	2	724	5,478			novem we like blood	GARAGE ROOF DRAIN-2		
28	SCS Runoff	1.992	2	724	6,898	60-20/20 Gran and			GARAGE ROOF DRAIN-1		
29	SCS Runoff	1.581	2	724	5,478				GARAGE ROOF DRAIN-3		
30	SCS Runoff	3.046	2	724	10,550				GARAGE ROOF DRAIN-4		
31	SCS Runoff	1.389	2	728	5,340	See this Wear year year			W.A.# 10		
32	SCS Runoff	0.147	2	728	562		1-0-0-0-0-0		YD-1		
33	SCS Runoff	0.262	2	728	1,004		*****		YD-2		
34	SCS Runoff	0.208	2	728	798		***		YD-3		
3162 - Poposed Conditions.gpw					Return f	Period: 50	Year	Tuesday,	Tuesday, 10 / 13 / 2015		

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
35	SCS Runoff	0.293	2	728	1,125				YD-4
36	SCS Runoff	0.059	2	724	203				W.A.#9
37	SCS Runoff	6.131	2	726	21,690			*****	DETENTION POND AREA
38	SCS Runoff	6.728	2	728	25,834			******	W.A.# 2
39	Combine	10.31	2	724	36,551	1, 11, 12, 17, 18, 24,		and the special state of	To S. Pond (A)
40	Combine	5.742	2	724	18,888	6, 7, 8, 9, 10, 13,			S. POND COMBINE (B)
41	Combine	14.06	2	724	51,116	2, 3, 27, 31, 32, 37,	******		To S. Pond (C)
42	Combine	4.806	2	724	16,716	14, 19, 20, 21, 22, 23,			S. POND COMBINE (D)
43	Combine	7.255	2	724	25,853	28, 29, 30, 33, 34, 35,			S. POND COMBINE (E)
44	Combine	42.18	2	724	149,124	39, 40, 41, 42, 43	*****		To S. Pond
45	Reservoir	7.829	2	752	149,105	44	46.17	65,901	S. Pond Overflow
46	Combine	1.307	2	726	5,075	15, 16, 25,	MINISTER MAN AND TAX		DP#1 - To Park Road
47	Combine	18.56	2	728	194,193	4, 5, 38,		****	DP#2 - To Culvert
48	Combine	0.245	2	726	984	45, 26, 36,			DP#3 - To Prospect
316	3162 - Poposed Conditions.gpw					eriod: 50 Y	/ear	Tuesday, 1	0 / 13 / 2015

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.181	2	724	573		400-400 No. 400 No.		CB-1
2	SCS Runoff	0.248	2	724	795	No dis sale SEE Edward	ero per ser ser ser ser		CB-2
3	SCS Runoff	5.754	2	724	19,457	000-007-001 E08 607-005	400 Jilly 500 AND AND SEE		SOUTH PARKING AREA
4	SCS Runoff	3.765	2	726	13,000				W.A.#3
5	SCS Runoff	2.473	2	728	9,475				W.A.# 4
6	SCS Runoff	0.514	2	724	1,717				CB-3
7	SCS Runoff	0.448	2	726	1,596	and an overlap also have			CB-4
8	SCS Runoff	2.487	2	724	8,214				CB-5
9	SCS Runoff	1.440	2	724	4,662				CB-6
10	SCS Runoff	0.893	2	724	2,949				CB-7
11	SCS Runoff	0.391	2	724	1,360	man and an area day			CB-8
12	SCS Runoff	0.695	2	724	2,273				CB-9
13	SCS Runoff	0.681	2	724	2,186	Alle Min. And Yank Alleysia	00000 NV 000 NM NM	dat to the set of	TD-2
14	SCS Runoff	0.464	2	726	1,612	generaliza ppe amma	disabilitarian anyan		Sisters Courtyard
15	SCS Runoff	0.371	2	724	1,193			00 00 to 100 to 400	W.A.# 5
16	SCS Runoff	1.099	2	728	4,213				W.A.# 6
17	SCS Runoff	1.922	2	728	7,385				W.A.# 1
18	SCS Runoff	1.285	2	724	4,292				CB-10
19	SCS Runoff	1.148	2	724	3,791				CB-11
20	SCS Runoff	1.327	2	724	4,340				CB-12
21	SCS Runoff	0.560	2	726	1,995	Miles rates design destroyage			CB-13
22	SCS Runoff	0.514	2	724	1,717				TD-3
23	SCS Runoff	1.533	2	726	5,499				TD-1
24	SCS Runoff	7.409	2	724	25,381				W.A.# 11
25	SCS Runoff	0.146	2	726	501	\$10 MI TO 100 MI TO 100			W.A.# 7
26	SCS Runoff	0.233	2	728	903	***	00 00 07 PM ID		W.A.# 8
27	SCS Runoff	1.761	2	724	6,120	New and Ada will this Add.			GARAGE ROOF DRAIN-2
28	SCS Runoff	2.218	2	724	7,707	war nah dala saar daal aala			GARAGE ROOF DRAIN-1
29	SCS Runoff	1.761	2	724	6,120		*****		GARAGE ROOF DRAIN-3
30	SCS Runoff	3.392	2	724	11,787			sau litte kilt vory det ville	GARAGE ROOF DRAIN-4
31	SCS Runoff	1.608	2	728	6,202	was allowed was was also			W.A.# 10
32	SCS Runoff	0.171	2	728	656				YD-1
33	SCS Runoff	0.309	2	728	1,184				YD-2
34	SCS Runoff	0.244	2	728	936				YD-3
3162 - Poposed Conditions.gpw					Return	Period: 100) Year	Tuesday,	10 / 13 / 2015

Hydrograph Summary Report Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
35	SCS Runoff	0.342	2	728	1,313				YD-4
36	SCS Runoff	0.065	2	724	227				W.A.#9
37	SCS Runoff	6.944	2	726	24,740				DETENTION POND AREA
38	SCS Runoff	7.970	2	728	30,548				W.A.#2
39	Combine	11.58	2	724	41,265	1, 11, 12,		Maryan San dan has may	To S. Pond (A)
40	Combine	6.439	2	724	21,324	17, 18, 24, 6, 7, 8,		yle III de Jac an Me	S. POND COMBINE (B)
41	Combine	15.86	2	724	57,971	9, 10, 13, 2, 3, 27,		60 ad 60 10 40 60	To S. Pond (C)
42	Combine	5.414	2	724	18,953	31, 32, 37, 14, 19, 20,		****	S. POND COMBINE (D)
43	Combine	8.121	2	724	29,049	21, 22, 23, 28, 29, 30,			S. POND COMBINE (E)
44	Combine	47.41	2	724	168,562	33, 34, 35, 39, 40, 41,	, one proceedings bin	****	To S. Pond
45	Reservoir	8.873	2	752	168,543	42, 43 44	46.50	74,064	S. Pond Overflow
46	Combine	1.519	2	726	5,907	15, 16, 25,	gar manigar agaraga lata		DP#1 - To Park Road
47	Combine	21.24	2	728	221,565	4, 5, 38,		******	DP#2 - To Culvert
48	Combine	0.280	2	726	1,129	45, 26, 36,		-	DP#3 - To Prospect
316	3162 - Poposed Conditions.gpw					Period: 100	Year	Tuesday, 1	0 / 13 / 2015

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. v10 $\,$

Tuesday, 10 / 13 / 2015

Return Period	Intensity-Du	ration-Frequency Ed	uation Coefficients ((FHA)
(Yrs)	В	D	E	(N/A)
1	0.0000	0.0000	0.0000	
2	30.1225	6.6000	0.7676	
3	0.0000	0.0000	0.0000	# 10.00 M To A
5	52.3308	9.8000	0.8367	
10	54.7383	10.8000	0.8016	
25	101.9813	15.8000	0.8971	
50	98.1551	15.7000	0.8577	
100	106.5909	17.0000	0.8462	

File name: Connecticut IDF.idf

Intensity = $B / (Tc + D)^E$

Return	Intensity Values (in/hr)														
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
2	4.59	3.49	2.85	2.43	2.13	1.90	1.72	1.58	1.46	1.36	1.27	1.20			
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
5	5.49	4.30	3.57	3.06	2.69	2.40	2.17	1.99	1.84	1.71	1.60	1.50			
10	5.99	4.81	4.04	3.51	3.11	2.80	2.55	2.35	2.18	2.03	1.91	1.80			
25	6.70	5.52	4.71	4.12	3.66	3.30	3.01	2.76	2.56	2.38	2.23	2.10			
50	7.30	6.06	5.20	4.57	4.09	3.70	3.38	3.12	2.90	2.71	2.54	2.40			
100	7.79	6.55	5.68	5.02	4.51	4.10	3.76	3.48	3.24	3.04	2.86	2.70			

Tc = time in minutes. Values may exceed 60.

Precip. file name: Hartford County. cp

		Rainfall Precipitation Table (in)														
Storm Distribution	1-yr	2-yr	3-yr	5-уг	10-yr	25-yr	50-уг	100-yr								
SCS 24-hour	0.00	3.20	0.00	4.10	4.70	5.50	6.20	6.90								
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00								
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00								
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00								
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00								
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00								
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00								
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00								

APPENDIX C Design Criteria

Table 2-2a Runoff curve numbers for urban areas 1/2

Cover description				imbers for	
Cover description			-hydrologic	SOII group	
	Average percent			0	ъ
Cover type and hydrologic condition	impervious area 2/	A	В	C	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) 3:					
Poor condition (grass cover < 50%)	*******	68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:					100
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)	******	98	98	98	98
Streets and roads:					
Paved; curbs and storm sewers (excluding					
right-of-way)	******	98	98	98	98
Paved; open ditches (including right-of-way)	******	83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) 4		63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)	******	96	96	96	96
Jrban districts:					
Commercial and business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre		61	75	83	87
1/3 acre		57	72	81	86
1/2 acre		54	70	80	85
1 acre		51	68	79	84
2 acres		46	65	77	82
		20	00	••	02
Developing urban areas					
Newly graded areas					
(pervious areas only, no vegetation) 5/	**********	77	86	91	94
Alla landa (CN) a ana datamaina danina assum tan a					
dle lands (CN s are determined using cover types					
similar to those in table 2-2c).					

 $^{^{1}}$ Average runoff condition, and I_{a} = 0.2S.

² The average percent impervious area shown was used to develop the composite CN s. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN s for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space cover type.

⁴ Composite CN s for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN s are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN s to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN s for the newly graded pervious areas.

Roughness coefficients (Manning s n) for sheet flow Table 3-1

Surface description	I u
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover < 20%	90.0
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses 2	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods:2	
Light underbrush	0.40
Dense underbrush	0.80

The n values are a composite of information compiled by Engman (1986)

Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and rative grass mixtures. 2-1

When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow. (17)

APPENDIX D
Storm Sewers Analysis

Storm Sewer Tabulation

tation	1	Len	Drng A	rea	Rnoff	Area x	С	Тс		Rain (I)	Total flow	Cap full	Vel	Pipe		Invert Ele	ev	HGL Ele	/	Grnd / Ri	m Elev	Line ID
	To Line		Incr	Total	Coem	Incr	Total	Inlet	Syst	(")	IIOW	luii		Size	Slope	Dn	Up	Ðn	Up	Dn	Up	-
		(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	40.187	0.00	0.00	0.00	0.00	0.00	0.0	4.0	0.0	8.89	17.89	5.45	24	0.45	44.80	44.98	45.80	46.04	46.50	52.00	STC 900 to S. DI
2	1	48.756	0.00	0.00	0.00	0.00	0.00	0.0	3.8	0.0	8.89	17.54	5.42	24	0.43	45.23	45.44	46.24	46.50	52.00	51.10	CB-3 to STC 900
3	2	51.365	0.00	0.00	0.00	0.00	0.00	0.0	3.7	0.0	8.54	10.53	6.31	18	0.72	45.94	46.31	46.97	47.44	51.10	50.50	CB-4 to CB-3
١	3	36.677	0.00	0.00	0.00	0.00	0.00	0.0	3.6	0.0	8.26	10.45	5.83	18	0.71	46.31	46.57	47.44	47.68	50.50	50.25	CB-5 to CB-4
5	4	190.761	0.00	0.00	0.00	0.00	0.00	0.0	2.8	0.0	4.52	21.23	3.91	18	2.93	46.57	52.15	47.68	52.96	50.25	55.74	CB-7 to CB-5
3	5	116.000	0.00	0.00	0.00	0.00	0.00	0.0	2.4	0.0	3.93	11.96	6.01	15	2.46	52.40	55.25	52.96	56.05	55.74	62.73	CB-9 to CB-7
7	6	77.152	0.00	0.00	0.00	0.00	0.00	0.0	2.2	0.0	3.20	10.43	5.92	15	1.87	57.74	59.18	58.22	59.90	62.73	62.47	CB-10 to CB-9
3	7	115.652	0.00	0.00	0.00	0.00	0.00	0.0	1.7	0.0	2.34	10.62	3.56	15	1.94	59.18	61.42	59.90	62.03	62.47	65.00	CB-11 to CB-10
	8	177.764	0.00	0.00	0.00	0.00	0.00	0.0	0.7	0.0	1.58	7.55	3.06	15	0.98	61.42	63.16	62.03	63.66	65.00	66.60	CB-12 to CB-11
0	9	91.769	0.00	0.00	0.00	0.00	0.00	0.0	0.2	0.0	0.70	2.91	2.96	12	0.48	63.41	63.85	63.74	64.20	66.60	66.85	CB-13 to CB-12
11	10	20.988	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.34	12.50	1.88	12	8.81	63.85	65.70	64.20	65.94	66.85	67.70	TD-3 to CB-13
12	4	131.954	0.00	0.00	0.00	0.00	0.00	0.0	0.6	0.0	2.09	8.04	4.77	12	3.65	47.19	52.00	47.68	52.62	50.25	62.50	CB-6 to CB-5
13	12	117.499	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.44	1.74	3,47	8	1.48	57.56	59.30	57.79	59.61	62.50	62.00	TD-2 to CB-6
14	6	74.407	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.27	3.45	1.40	12	0.67	55.50	56.00	56.05	56.21	62.73	59.00	CB-8 to CB-9
15	End	27.730	0.00	0.00	0.00	0.00	0.00	0.0	1.6	0.0	1.84	8.50	3.66	18	0.47	46.44	46.57	46.91	47.08	46.50	51.75	CB-2 to S.POND
16	15	17.243	0.00	0.00	0.00	0.00	0.00	0.0	1.5	0.0	1.68	8.42	4.44	15	1.22	46.82	47.03	47.20	47.54	51.75	52.05	CB-1 to CB-2
17	16	40.319	0.00	0.00	0.00	0.00	0.00	0.0	1.4	0.0	1.57	5.78	4.97	12	1.88	47.28	48.04	47.64	48.57	52.05	52.80	YD-4 to CB-1
18	17	69.969	0.00	0.00	0.00	0.00	0.00	0.0	1.1	0.0	1.37	5.87	3.39	12	1.94	48.04	49.40	48.57	49.90	52.80	52.80	YD-3 to YD-4
19	18	23.109	0.00	0.00	0.00	0.00	0.00	0.0	0.9	0.0	1.24	5.54	3.31	12	1.73	49.40	49.80	49.90	50.27	52.80	59.50	YD-2 to YD-3
20	19	128.001	0.00	0.00	0.00	0.00	0.00	0.0	0.5	0.0	1.08	7.23	4.94	12	2.95	56.49	60.27	56.75	60.71	59.50	63.36	YD-1 to YD-2
21	20	68.677	0.00	0.00	0.00	0.00	0.00	0.0	0.1	0.0	0.98	4.24	3.07	12	1.21	60.27	61.10	60.71	61.51	63.36	71.50	Pipe - (36)
22	21	25.983	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.98	6.12	3.18	12	2.12	61.10	61.65	61.51	62.06	71.50	63.65	TD-1 to SMH-1
	at File:	2462 5		l Pipe An	ahoin -						1	J	j				of lines: 27				te: 10/13/2	2015

NOTES:Known Qs only ; c = cir e = ellip b = box

Storm Sewers v10.00

Page 2

Storm Sewer Tabulation

tation	L	.en	Drng A	rea	Rnoff	Area x	С	Тс		Rain	Total	Cap	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / R	im Elev	Line ID
ine To			Incr	Total	coeff	Incr	Total	Inlet	Syst	(1)	flow	full		Size	Siope	Dn	Up	Dn	Up	Dn	Up	
Lin		ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
3 E	nd 4	2.660	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	6.16	20.46	5.17	24	0.59	43.25	43.50	44.00	44.38	43.25	46.50	OS to CULVER
		6.000		0.00	0.00	0.00	0.00	0.0	0.0	0.0	1.51	4.54	1.92	12	1.16	48.00	49.00	50.59	50.70	54.00	54.00	ROOD DRAIN
		6.000		0.00	0.00	0.00	0.00	0.0	0.0	0.0	1.20	1.54	3.44	8	1.16	48.00	49.00	50.47	51.08	54.00	54.00	ROOF DRAIN
		6.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	1.20	1.54	3.44	8	1.16	48.00	49.00	50.47	51.08	54.00	54.00	ROOF DRAIN
7 E	nd 8	6.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	2.30	4.54	2.93	12	1.16	48.00	49.00	50.67	50.93	54.00	54.00	ROOF DRAIN
Project F					alysis.sto											Numbe	r of lines: 2	7		Run Da	i i i i i i i i i i i i i i i i i i i	2015

Page 1

Inlet Report

ine. Vo	Inlet ID	Q= CIA	Q	Q capt	Q Byp	Junc Type	Curb Ir	nlet	Gra	te inlet				G	utter					Inlet		Byp	
		(cfs)	(cfs)	(cfs)	(cfs)	Турс	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No	
1	STC 900	0.00	0.00	0.00	0.00	МН	0.0	1.50	0.00	1.50	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off	
2	CB-3	0.34°	0.00	0.34	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.022	0.022	0.013	0.10	4.36	0.18	4.36	1.0	Off	
3	CB-4	0.28*	0.00	0.28	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.021	0.021	0.013	0.09	4.06	0.17	4.06	1.0	Off	
4	CB-5	1.65*	0.20	1.85	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.036	0.036	0.013	0.27	7.56	0.36	7.56	1.0	Off	
5	CB-7	0.59*	0.00	0.39	0.20	Comb	4.0	2.31	0.00	2.31	1.35	0.030	12.00	0.028	0.028	0.013	0.10	3.65	0.19	3.65	1.0	4	
6	CB-9	0.46*	0.00	0.46	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.025	0.025	0.013	0.11	4.60	0.20	4.60	1.0	Off	
7	CB-10	0.86*	0.00	0.86	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.036	0.036	0.013	0.17	4.81	0.26	4.81	1.0	Off	
3	CB-11	0.76*	0.00	0.76	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.024	0.024	0.013	0.15	6.38	0.24	6.38	1.0	Off	
9	CB-12	0.88*	0.00	0.88	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.024	0.024	0.013	0.17	6.97	0.25	6.97	1.0	Off	
0	CB-13	0.35*	0.00	0.36	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.020	0.020	0.013	0.10	4.82	0.18	4.82	1.0	Off	
11	TD-3	0.34*	0.00	0.34	0.00	Grate	0.0	1.50	0.00	24.00	1.00	0.042	12.00	0.036	0.036	0.013	0.09	2.39	0.17	2.39	1.0	10	
12	CB-6 (DOUBLE T	1.65*	0.00	1.65	0.00	Comb	4.0	4.32	5.83	4.32	1.35	Sag	12.00	0.022	0.022	0.013	0.20	9.04	0.28	9.04	1.0	Off	
13	TD-2	0.44*	0.00	0.44	0.00	Grate	0.0	1.50	20.00	20.00	1.00	Sag	12.00	0.024	0.024	0.013	0.05	1.98	0.13	1.98	1.0	Off	
14	CB-8 (DOUBLE T	0.27*	0.00	0.27	0.00	Comb	4.0	4.62	6.24	4.62	1.35	Sag	12.00	0.005	0.005	0.013	0.06	11.47	0.14	11.47	1.0	Off	
15	CB-2	0.16*	0.00	0.16	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.020	0.020	0.013	0.06	3.12	0.15	3.12	1.0	Off	
16	CB-1	0.12*	0.00	0.12	0.00	Comb	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.034	0.034	0.013	0.06	1.85	0.15	1.85	1.0	Off	
17	YD-4	0.19*	0.00	0.19	0.00	Grate	0.0	1.50	3.12	2.31	1.35	Sag	12.00	0.034	0.034	0.013	0.08	2.28	0.16	2.28	1.0	Off	
18	YD-3	0.13*	0.00	0.13	0.00	Grate	0.0	0.00	3.12	2.31	1.35	Sag	12.00	0.020	0.020	0.013	0.06	2.81	0.14	2.81	1.0	17	
19	YD-2	0.16*	0.00	0.16	0.00	Grate	0.0	0.00	0.00	2.31	1.35	0.053	12.00	0.053	0.053	0.013	0.07	1.36	0.16	1.36	1.0	18	
20	YD-1	0.10*	0.00	0.10	0.00	Grate	0.0	0.00	3.12	2.31	1.35	Sag	12.00	0.020	0.020	0.013	0.05	2.44	0.13	2.44	1.0	19	
21	SMH-1	0.00	0.00	0.00	0.00	МН	0.0	1.50	0.00	1.50	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off	
22	TD-1	0.98*	0.00	0.98	0.00	Grate	0.0	1.50	20.00	20.00	1.00	Sag	12.00	0.050	0.050	0.013	0.09	1.70	0.17	1.70	1.0	Off	
23	os	6.16*	0.00	6.16	0.00	Grate	0.0	1.50	3.12	2.31	1.35	Sag	12.00	0.020	0.020	0.013	0.57	28.25	0.57	28.25	0.0	Off	
Projec	t File: 3162 - Propose	ed Pipe An	alysis.st	n								•		Number of lines: 27						Run Date: 10/13/2015			

NOTES. Thethe values - 0.016, Nitowit Qs only, Indicates Nitowit Q added. All cultimets are time

Storm Sewers v10.00

Inlet Report

ne o	Inlet ID	Q= CIA	Q carry	Q capt	Q Byp	Junc Type	Curb Ir	det	Gra	te Inlet				G	utter					Inlet		By ₁
		(cfs)	(cfs)	(cfs)	(cfs)	1,760	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
24	RD-1	1.51*	0.00	1.51	0.00	Grate	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.020	0.020	0.013	0.23	11.47	0.31	11.47	1.0	Off
25	RD-2	1.20*	0.00	1.20	0.00	Grate	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.020	0.020	0.013	0.20	9.94	0.20	9.94	0.0	Off
6	RD-3	1.20*	0.00	1.20	0.00	Grate	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.020	0.020	0.013	0.20	9.94	0.20	9.94	0.0	Off
7		2.30*	0.00	0.00	2.30	МН	4.0	2.31	3.12	2.31	1.35	Sag	12.00	0.020	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
											i											
		:																				
ninc	t File: 3162 - Propo	sed Pine As	valueie et											Number	of lines:	27			Data	10/13/20	15	

Storm Sewers v10.00

APPENDIX E
Stormceptor Sizing Report

Stormceptor Design Summary PCSWMM for Stormceptor

Project Information

-	
Date	10/13/2015
Project Name	Arcadia Crossing
Project Number	3162
Location	West Hartford

Designer Information

Company	Design Professionals Inc.
Contact	860-291-8755

Notes

N/A			

Drainage Area

Total Area (ac)	2.06
Imperviousness (%)	80

The Stormceptor System model STC 2400 achieves the water quality objective removing 82% TSS for a Fine (organics, silts and sand) particle size distribution.

Rainfall

Name	HARTFORD WSO AIRPORT				
State	СТ				
ID	3456				
Years of Records	1954 to 2005				
Latitude	41°56'17"N				
Longitude	72°40'57"W				

Water Quality Objective

TSS Removal (%)	80

Upstream Storage

Storage	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Sizing Summary

Stormceptor Model	TSS Removal
STC 450i	69
STC 900	78
STC 1200	78
STC 1800	78
STC 2400	32
STC 3600	83
STC 4800	86
STC 6000	87
STC 7200	89
STC 11000	92
STC 13000	92
STC 16000	93

Particle Size Distribution

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

Fine (organics, silts and sand)

			i ille (organic	э, ч	siils allu sailu,	,		
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	_	ft/s		μm	%		ft/s
20	20	1.3	0.0013	\Box		n 9		
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences

mioruna outloor ipo invole Elevatione Dimerente							
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000				
Single inlet pipe	3 in.	1 in.	3 in.				
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.				

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

APPENDIX F Drainage Area Maps

ENCLOSURE I Letter from The Metropolitan District

October 13, 2015

Andrew J. Krar, P.E. Design Professionals, Inc. 21 Jeffrey Drive South Windsor, CT 06074

Re:

Water & Sewer Availability for Property Located at the Southwest Corner of Park Road and Prospect Avenue, Arcadia Crossing Development, West Hartford

Dear Mr. Krar:

In response to your request, we are confirming the availability of public water and sewer mains located in Park Road and Prospect Street, as well as private lands, which may be used to service the above referenced property. There exists an 8-inch water main in Prospect Avenue, a 30-inch water main in Park Road, and a 12-inch sanitary sewer on private lands within the identified parcel. We are currently processing your request for a capacity analysis based on the information submitted to us on Friday, October 9, 2015.

Permits will be issued after the plans are submitted and approved by the District. There will also be water and sewer connection charges due for the proposed property that must be satisfied prior to the connections being made. The District will notify the owner of these charges upon submission of a certified plot plan or deed to our Customer Service Center, located at 60 Murphy Road in Hartford.

If you have any additional questions, please feel free to contact me at 860-278-7850 ext. 3445.

THE METROPOLITAN DISTRICT

Marcal

Very Truly Yours.

Michael T. Curley, P.E.

Manager of Technical Services

p.c. Jennifer Ottalagana, MDC James Eschert, MDC Utility Services

ENCLOSURE J Letter from West Hartford Director of Health

WHBHD

October 14, 2015

Peter R. DeMallie P.O. Box 1167 21 Jeffrey Drive South Windsor, CT 06074

> Re: Sewage Disposal Adequacy

> > Arcadia Crossing, One Park Road, West Hartford, CT

DPI Project Number 3162

Dear Mr. DeMallie,

The sanitary sewer line that services the above-referenced property appears adequate under normal conditions to accept the peak flow expected to result from the proposed use of this property described in your October 13, 2015 correspondence to this office.

It is our understanding the applicants propose to redevelop the existing buildings and to construct new building additions to house 310 apartment units and 36 residential living units, total number of units, 346. The proposed project will also involve attendant parking which will include garage structures, utility systems, landscaping, lighting and signage.

Contingent upon an acceptable sewer discharge plan by the MDC and an acceptable storm water discharge plan by the Town Engineer, please consider this letter as our statement of adequacy under Section 177-44. C. (1) (e) of the Code of the Town of West Hartford.

Sincerely,

almee Elect RS MPH. Assistant Director of Health

Cc: **Todd Dumais**

$\label{eq:enclosure} ENCLOSURE\ K$ Application Fee Check made payable to Town of West Hartford

1006

CENTER DEVELOPMENT CORPORATION ONE GATEWAY PLAZA, 2ND FLOOR PORT CHESTER, NY 10573

Hudson Valley Bank

Projection of Person

50-930-219

PAY

Sixty Thousand Seventy and 20/100 Dollars

DATE 10/1/2015

AMOUNT \$60,070.20

TO THE ORDER Town of West Hartford OF:

AUTHARIZED SIGNATURE

lamo: Zone Change for Arcadia Crossing

#O 10067# #:021909300# 0803665#901#

CENTER DEVELOPMENT CORPORATION

10067

Town of West Hartford

10067

10/1/2015

\$60,070.20

Zone Change for Arcadia Crossing

In Payment For:

Purchase #02114123

10/1/2015

\$60,070.20

ENCLOSURE L

Plan set entitled "Arcadia Crossing, One Park Road, West Hartford, Connecticut, Zone Change & SDD Designation Application" prepared by Design Professionals, Inc., et. al. dated October 14, 2015